PIPs: Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories

From the paper abstract:

[...] we revisit Sand and Teller's "particle video" approach, and study pixel tracking as a long-range motion estimation problem, where every pixel is described with a trajectory that locates it in multiple future frames. We re-build this classic approach using components that drive the current state-of-the-art in flow and object tracking, such as dense cost maps, iterative optimization, and learned appearance updates. We train our models using long-range amodal point trajectories mined from existing optical flow data that we synthetically augment with multi-frame occlusions.

Citation

@inproceedings{harley2022particle,
  title={Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories},
  author={Adam W Harley and Zhaoyuan Fang and Katerina Fragkiadaki},
  booktitle={ECCV},
  year={2022}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.