|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Vic_model2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Vic_model2 |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2487 |
|
- Accuracy: 0.9657 |
|
- Precision: 0.9663 |
|
- Recall: 0.9657 |
|
- F1: 0.9654 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.8139 | 1.0 | 1313 | 0.6269 | 0.83 | 0.8370 | 0.8300 | 0.8242 | |
|
| 0.4671 | 2.0 | 2626 | 0.5028 | 0.8786 | 0.8837 | 0.8786 | 0.8757 | |
|
| 0.343 | 3.0 | 3939 | 0.4058 | 0.8957 | 0.9038 | 0.8957 | 0.8965 | |
|
| 0.222 | 4.0 | 5252 | 0.4109 | 0.9286 | 0.9295 | 0.9286 | 0.9274 | |
|
| 0.1237 | 5.0 | 6565 | 0.3822 | 0.9357 | 0.9387 | 0.9357 | 0.9354 | |
|
| 0.0629 | 6.0 | 7878 | 0.3639 | 0.9429 | 0.9459 | 0.9429 | 0.9433 | |
|
| 0.0186 | 7.0 | 9191 | 0.2977 | 0.9557 | 0.9567 | 0.9557 | 0.9555 | |
|
| 0.0104 | 8.0 | 10504 | 0.2487 | 0.9657 | 0.9663 | 0.9657 | 0.9654 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|