|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from dataclasses import dataclass |
|
import inspect |
|
|
|
|
|
@dataclass |
|
class GPTConfig: |
|
context_length: int = 1024 |
|
vocab_size: int = 50257 |
|
num_layers: int = 12 |
|
embd_size: int = 768 |
|
num_heads: int = 12 |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
assert config.embd_size % config.num_heads == 0, f"embedding dim should be divisible by number of heads" |
|
self.num_heads = config.num_heads |
|
self.embd_size = config.embd_size |
|
|
|
self.c_attn = nn.Linear(config.embd_size, 3 * config.embd_size) |
|
self.c_proj = nn.Linear(config.embd_size, config.embd_size) |
|
self.c_proj.SCALE_INIT = 1.0 |
|
|
|
|
|
|
|
def forward(self, x): |
|
B, T, C = x.shape |
|
|
|
|
|
|
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.embd_size, dim=-1) |
|
q = q.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) |
|
k = k.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) |
|
v = v.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
out = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
out = out.transpose(1, 2).contiguous().view(B, T, C) |
|
out = self.c_proj(out) |
|
return out |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.embd_size, 4 * config.embd_size) |
|
self.gelu = nn.GELU(approximate='tanh') |
|
self.c_proj = nn.Linear(4 * config.embd_size, config.embd_size) |
|
self.c_proj.SCALE_INIT = 1.0 |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
""" Transformer Encoder block """ |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.embd_size) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.embd_size) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class GPT(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(self.config.vocab_size, self.config.embd_size), |
|
wpe = nn.Embedding(self.config.context_length, self.config.embd_size), |
|
h = nn.ModuleList([Block(self.config) for _ in range(self.config.num_layers)]), |
|
ln_f = nn.LayerNorm(self.config.embd_size) |
|
)) |
|
|
|
self.lm_head = nn.Linear(self.config.embd_size, self.config.vocab_size, bias=False) |
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'SCALE_INIT'): |
|
std /= (2 * self.config.num_layers)**0.5 |
|
torch.nn.init.normal_(module.weight, mean=0, std=std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
B, T = idx.shape |
|
assert T <= self.config.context_length, f'sequence length {T} should be <= {self.config.context_length}' |
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_embd = self.transformer.wpe(pos) |
|
tok_embd = self.transformer.wte(idx) |
|
x = pos_embd + tok_embd |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), targets.view(-1)) |
|
return logits, loss |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
""" Loads pretrained GPT2 model weights from huggingface """ |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
print(f"loading weights from pretrained gpt: {model_type}") |
|
|
|
config_args = { |
|
'gpt2': dict(num_layers=12, num_heads=12, embd_size=768), |
|
'gpt2-medium': dict(num_layers=24, num_heads=16, embd_size=1024), |
|
'gpt2-large': dict(num_layers=36, num_heads=20, embd_size=1280), |
|
'gpt2-xl': dict(num_layers=48, num_heads=25, embd_size=1600), |
|
}[model_type] |
|
config_args['vocab_size'] = 50257 |
|
config_args['context_length'] = 1024 |
|
|
|
|
|
config = GPTConfig(**config_args) |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
sd_keys = sd.keys() |
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
sd_keys_hf = sd_hf.keys() |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
assert len(sd_keys) == len(sd_keys_hf), f"mismatched keys {len(sd_keys)} != {len(sd_keys_hf)}" |
|
|
|
|
|
for k in sd_keys_hf: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].T) |
|
else: |
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
return model |
|
|
|
def configure_optimizers(self, weight_decay, lr, device_type, master_process): |
|
""" |
|
Essentially implements weight decay (regularization tool, by decaying the weights, we |
|
forcing the optimizer to use more of the weights, and not allowing any single weight to dominate) |
|
""" |
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad} |
|
|
|
|
|
|
|
decay_params = [p for pn, p in param_dict.items() if p.dim() >= 2] |
|
nodecay_params = [p for pn, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
if master_process: |
|
print(f'num decay parameter tensors: {len(decay_params)} with {num_decay_params:,} parameters') |
|
print(f'num nodecay parameter tensors: {len(nodecay_params)} with {num_nodecay_params:,} parameters') |
|
|
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
use_fused = fused_available and device_type == 'cuda' |
|
if master_process: |
|
print(f'using fused AdamW optimizer: {use_fused}') |
|
optimizer = torch.optim.AdamW(optim_groups, lr=lr, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) |
|
return optimizer |