import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass import inspect @dataclass class GPTConfig: context_length: int = 1024 # max context / sequence length vocab_size: int = 50257 # number of tokens: 50000 BPE merges + 256 bytes tokens + 1 token num_layers: int = 12 embd_size: int = 768 # embedding dim num_heads: int = 12 class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() # 'embd_size' sized vector divided into 'num_heads' heads assert config.embd_size % config.num_heads == 0, f"embedding dim should be divisible by number of heads" self.num_heads = config.num_heads self.embd_size = config.embd_size # batched key, query, and value projections for all heads self.c_attn = nn.Linear(config.embd_size, 3 * config.embd_size) self.c_proj = nn.Linear(config.embd_size, config.embd_size) self.c_proj.SCALE_INIT = 1.0 # not really a bias, more of a mask, but following OpenAI/HF naming convention # self.register_buffer("bias", torch.tril(torch.ones(config.context_length, config.context_length)).view(1, 1, config.context_length, config.context_length)) def forward(self, x): B, T, C = x.shape # calculate query, key, values for all heads in a batch and move head forward to be the batch dim # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels qkv = self.c_attn(x) # (B, T, 3C) q, k, v = qkv.split(self.embd_size, dim=-1) # (B,T,C), (B,T,C), (B,T,C) q = q.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) # (B,nh,T,hs) k = k.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) # (B,nh,T,hs) v = v.view(B, T, self.num_heads, self.embd_size // self.num_heads).transpose(1, 2) # (B,nh,T,hs) # attn = q @ k.transpose(-2, -1) / np.sqrt(k.shape[-1]) # (B,nh,T,hs) @ (B,nh,hs,T) --> (B,nh,T,T) # attn = attn.masked_fill(self.bias[:,:,:T,:T] == 0, float("-inf")) # attn = F.softmax(attn, dim=-1) # out = attn @ v # (B,nh,T,T) @ (B,nh,T,hs) --> (B,nh,T,hs) # flash-attention paper (significantly faster, but logically the same as above 4 lines) out = F.scaled_dot_product_attention(q, k, v, is_causal=True) # (B,nh,T,hs) out = out.transpose(1, 2).contiguous().view(B, T, C) # (B,nh,T,hs) --> (B,T,nh,hs) --> (B,T,C=nh*hs) out = self.c_proj(out) # (B,T,C) --> (B,T,C) return out class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.embd_size, 4 * config.embd_size) self.gelu = nn.GELU(approximate='tanh') # approximate='tanh' used to try to reproduce gpt2 paper self.c_proj = nn.Linear(4 * config.embd_size, config.embd_size) self.c_proj.SCALE_INIT = 1.0 def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x class Block(nn.Module): """ Transformer Encoder block """ def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.embd_size) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.embd_size) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(self.config.vocab_size, self.config.embd_size), wpe = nn.Embedding(self.config.context_length, self.config.embd_size), h = nn.ModuleList([Block(self.config) for _ in range(self.config.num_layers)]), ln_f = nn.LayerNorm(self.config.embd_size) )) # language modeling head self.lm_head = nn.Linear(self.config.embd_size, self.config.vocab_size, bias=False) # weight sharing scheme (reduces 768*50267=~40M params, fewer params, more efficient) self.transformer.wte.weight = self.lm_head.weight # init params (iterates over all submodules and applies _init_weights) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'SCALE_INIT'): std /= (2 * self.config.num_layers)**0.5 torch.nn.init.normal_(module.weight, mean=0, std=std) # as per openai gpt-2 source code if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0, std=0.02) def forward(self, idx, targets=None): B, T = idx.shape assert T <= self.config.context_length, f'sequence length {T} should be <= {self.config.context_length}' pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # (T,) pos_embd = self.transformer.wpe(pos) # (T, embd_size) tok_embd = self.transformer.wte(idx) # (B, T, embd_size) x = pos_embd + tok_embd # (B, T, embd_size) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) # (B, T, embd_size) logits = self.lm_head(x) # (B, T, vocab_size) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), targets.view(-1)) return logits, loss @classmethod def from_pretrained(cls, model_type): """ Loads pretrained GPT2 model weights from huggingface """ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} from transformers import GPT2LMHeadModel print(f"loading weights from pretrained gpt: {model_type}") config_args = { 'gpt2': dict(num_layers=12, num_heads=12, embd_size=768), # 124M params 'gpt2-medium': dict(num_layers=24, num_heads=16, embd_size=1024), # 350M params 'gpt2-large': dict(num_layers=36, num_heads=20, embd_size=1280), # 774M params 'gpt2-xl': dict(num_layers=48, num_heads=25, embd_size=1600), # 1558M params }[model_type] config_args['vocab_size'] = 50257 config_args['context_length'] = 1024 # create a from-scratch minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # init a huggingface transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] assert len(sd_keys) == len(sd_keys_hf), f"mismatched keys {len(sd_keys)} != {len(sd_keys_hf)}" # copy while ensuring all parameters are aligned in names and shape for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # need to transpose Conv1D weights assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].T) else: assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model def configure_optimizers(self, weight_decay, lr, device_type, master_process): """ Essentially implements weight decay (regularization tool, by decaying the weights, we forcing the optimizer to use more of the weights, and not allowing any single weight to dominate) """ # start with all of the candidate params (that require gradient) param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad} # create optim groups: any parameters that are 2D will be weight decayed, otherwise no. # i.e., all weight tensors in matmuls + embeddings will decay, whereas biases and layernorms won't be decayed decay_params = [p for pn, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for pn, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) if master_process: print(f'num decay parameter tensors: {len(decay_params)} with {num_decay_params:,} parameters') print(f'num nodecay parameter tensors: {len(nodecay_params)} with {num_nodecay_params:,} parameters') # use fused version of AdamW optimizer (faster than non-fused version) fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and device_type == 'cuda' if master_process: print(f'using fused AdamW optimizer: {use_fused}') optimizer = torch.optim.AdamW(optim_groups, lr=lr, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) return optimizer