Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e89f96913218f8de_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e89f96913218f8de_train_data.json
  type:
    field_input: intent
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: abaddon182/68244d7b-1e4c-46bb-aed6-2919e549ccf5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/e89f96913218f8de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a5f829a5-85bb-442f-a490-e8bbfde3b08d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a5f829a5-85bb-442f-a490-e8bbfde3b08d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

68244d7b-1e4c-46bb-aed6-2919e549ccf5

This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
10.3743 0.0009 1 10.3783
10.3448 0.0434 50 10.3443
10.3147 0.0868 100 10.3178
10.289 0.1302 150 10.2944
10.2745 0.1736 200 10.2811
10.2655 0.2170 250 10.2737
10.2663 0.2604 300 10.2700
10.2649 0.3038 350 10.2687
10.261 0.3472 400 10.2685

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for abaddon182/68244d7b-1e4c-46bb-aed6-2919e549ccf5

Adapter
(311)
this model