Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
class Charm15Model(nn.Module):
|
7 |
+
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
8 |
+
"""Initialize Charm 15 with a pretrained model."""
|
9 |
+
super(Charm15Model, self).__init__()
|
10 |
+
self.device = device
|
11 |
+
self.model_name = model_name
|
12 |
+
|
13 |
+
try:
|
14 |
+
# Load tokenizer with padding fix
|
15 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
if self.tokenizer.pad_token is None:
|
17 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
18 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
19 |
+
|
20 |
+
# Load model with optimizations
|
21 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_name,
|
23 |
+
torch_dtype=torch.bfloat16, # Memory-efficient
|
24 |
+
device_map="auto", # Auto-distribute
|
25 |
+
low_cpu_mem_usage=True
|
26 |
+
).to(self.device)
|
27 |
+
print(f"Loaded model {model_name} on {self.device}")
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error initializing model/tokenizer: {e}")
|
30 |
+
raise
|
31 |
+
|
32 |
+
def generate_text(self, prompt: str, max_length: int = 2048, temperature: float = 0.7,
|
33 |
+
top_k: int = 50, top_p: float = 0.9):
|
34 |
+
"""Generate text with the model."""
|
35 |
+
try:
|
36 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
37 |
+
with torch.no_grad():
|
38 |
+
output = self.model.generate(
|
39 |
+
**inputs,
|
40 |
+
max_length=max_length, # Matches your config
|
41 |
+
temperature=temperature,
|
42 |
+
top_k=top_k,
|
43 |
+
top_p=top_p,
|
44 |
+
do_sample=True, # From your generation config
|
45 |
+
repetition_penalty=1.1, # Anti-repetition
|
46 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
47 |
+
use_cache=True # Speed up
|
48 |
+
)
|
49 |
+
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error generating text: {e}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
def fine_tune(self, train_dataloader: DataLoader, eval_dataloader: DataLoader = None,
|
55 |
+
epochs: int = 3, lr: float = 5e-5, gradient_accumulation_steps: int = 4):
|
56 |
+
"""Fine-tune the model with a DataLoader."""
|
57 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr)
|
58 |
+
self.model.train()
|
59 |
+
|
60 |
+
try:
|
61 |
+
for epoch in range(epochs):
|
62 |
+
total_loss = 0
|
63 |
+
for step, batch in enumerate(train_dataloader):
|
64 |
+
batch = {k: v.to(self.device) for k, v in batch.items()}
|
65 |
+
outputs = self.model(**batch)
|
66 |
+
loss = outputs.loss / gradient_accumulation_steps # Normalize for accumulation
|
67 |
+
|
68 |
+
loss.backward()
|
69 |
+
if (step + 1) % gradient_accumulation_steps == 0:
|
70 |
+
optimizer.step()
|
71 |
+
optimizer.zero_grad()
|
72 |
+
|
73 |
+
total_loss += loss.item() * gradient_accumulation_steps
|
74 |
+
|
75 |
+
avg_loss = total_loss / len(train_dataloader)
|
76 |
+
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {avg_loss:.4f}")
|
77 |
+
|
78 |
+
# Optional evaluation
|
79 |
+
if eval_dataloader:
|
80 |
+
eval_loss = self._evaluate(eval_dataloader)
|
81 |
+
print(f"Eval Loss: {eval_loss:.4f}")
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error during fine-tuning: {e}")
|
84 |
+
raise
|
85 |
+
|
86 |
+
def _evaluate(self, dataloader: DataLoader):
|
87 |
+
"""Evaluate the model on a DataLoader."""
|
88 |
+
self.model.eval()
|
89 |
+
total_loss = 0
|
90 |
+
with torch.no_grad():
|
91 |
+
for batch in dataloader:
|
92 |
+
batch = {k: v.to(self.device) for k, v in batch.items()}
|
93 |
+
outputs = self.model(**batch)
|
94 |
+
total_loss += outputs.loss.item()
|
95 |
+
self.model.train()
|
96 |
+
return total_loss / len(dataloader)
|
97 |
+
|
98 |
+
def save_model(self, save_path: str):
|
99 |
+
"""Save model and tokenizer."""
|
100 |
+
try:
|
101 |
+
os.makedirs(save_path, exist_ok=True)
|
102 |
+
self.model.save_pretrained(save_path)
|
103 |
+
self.tokenizer.save_pretrained(save_path)
|
104 |
+
print(f"Model saved to {save_path}")
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Error saving model: {e}")
|
107 |
+
|
108 |
+
def load_model(self, load_path: str):
|
109 |
+
"""Load model and tokenizer from a path."""
|
110 |
+
try:
|
111 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
112 |
+
load_path, torch_dtype=torch.bfloat16, device_map="auto"
|
113 |
+
).to(self.device)
|
114 |
+
self.tokenizer = AutoTokenizer.from_pretrained(load_path)
|
115 |
+
if self.tokenizer.pad_token is None:
|
116 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
117 |
+
print(f"Model loaded from {load_path}")
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error loading model: {e}")
|
120 |
+
raise
|
121 |
+
|
122 |
+
def quantize_model(self, bits: int = 8):
|
123 |
+
"""Quantize model for efficiency (basic dynamic quantization)."""
|
124 |
+
try:
|
125 |
+
if bits != 8:
|
126 |
+
print("⚠️ Only 8-bit quantization supported with torch.qint8")
|
127 |
+
self.model = torch.quantization.quantize_dynamic(
|
128 |
+
self.model, {nn.Linear}, dtype=torch.qint8
|
129 |
+
)
|
130 |
+
print("Model quantized to 8 bits (dynamic quantization)")
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error quantizing model: {e}")
|
133 |
+
|
134 |
+
if __name__ == "__main__":
|
135 |
+
# Example usage with your prior setup
|
136 |
+
model = Charm15Model(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
137 |
+
|
138 |
+
# Generate text
|
139 |
+
prompt = "Charm 15 is amazing because"
|
140 |
+
text = model.generate_text(prompt)
|
141 |
+
print(f"Generated: {text}")
|
142 |
+
|
143 |
+
# Assuming DataLoader from your earlier code
|
144 |
+
from your_dataloader_script import DataLoaderHandler # Adjust import
|
145 |
+
train_loader = DataLoaderHandler(
|
146 |
+
"../datasets/eclipse_corpuz_1.1.jsonl",
|
147 |
+
"../finetuned_charm15/tokenizer.json",
|
148 |
+
batch_size=4
|
149 |
+
).get_dataloader()
|
150 |
+
|
151 |
+
# Fine-tune
|
152 |
+
model.fine_tune(train_loader)
|
153 |
+
|
154 |
+
# Save
|
155 |
+
model.save_model("../finetuned_charm15")
|
156 |
+
|
157 |
+
# Quantize for 6G edge
|
158 |
+
model.quantize_model()
|
159 |
+
|
160 |
+
# Reload and test
|
161 |
+
model.load_model("../finetuned_charm15")
|
162 |
+
print(model.generate_text("Testing reloaded model"))
|