GeminiFan207 commited on
Commit
434d0b4
·
verified ·
1 Parent(s): 6b81dd1

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +162 -0
model.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast
4
+ from torch.utils.data import DataLoader
5
+
6
+ class Charm15Model(nn.Module):
7
+ def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
8
+ """Initialize Charm 15 with a pretrained model."""
9
+ super(Charm15Model, self).__init__()
10
+ self.device = device
11
+ self.model_name = model_name
12
+
13
+ try:
14
+ # Load tokenizer with padding fix
15
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
16
+ if self.tokenizer.pad_token is None:
17
+ self.tokenizer.pad_token = self.tokenizer.eos_token
18
+ self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
19
+
20
+ # Load model with optimizations
21
+ self.model = AutoModelForCausalLM.from_pretrained(
22
+ model_name,
23
+ torch_dtype=torch.bfloat16, # Memory-efficient
24
+ device_map="auto", # Auto-distribute
25
+ low_cpu_mem_usage=True
26
+ ).to(self.device)
27
+ print(f"Loaded model {model_name} on {self.device}")
28
+ except Exception as e:
29
+ print(f"Error initializing model/tokenizer: {e}")
30
+ raise
31
+
32
+ def generate_text(self, prompt: str, max_length: int = 2048, temperature: float = 0.7,
33
+ top_k: int = 50, top_p: float = 0.9):
34
+ """Generate text with the model."""
35
+ try:
36
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
37
+ with torch.no_grad():
38
+ output = self.model.generate(
39
+ **inputs,
40
+ max_length=max_length, # Matches your config
41
+ temperature=temperature,
42
+ top_k=top_k,
43
+ top_p=top_p,
44
+ do_sample=True, # From your generation config
45
+ repetition_penalty=1.1, # Anti-repetition
46
+ pad_token_id=self.tokenizer.pad_token_id,
47
+ use_cache=True # Speed up
48
+ )
49
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
50
+ except Exception as e:
51
+ print(f"Error generating text: {e}")
52
+ return None
53
+
54
+ def fine_tune(self, train_dataloader: DataLoader, eval_dataloader: DataLoader = None,
55
+ epochs: int = 3, lr: float = 5e-5, gradient_accumulation_steps: int = 4):
56
+ """Fine-tune the model with a DataLoader."""
57
+ optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr)
58
+ self.model.train()
59
+
60
+ try:
61
+ for epoch in range(epochs):
62
+ total_loss = 0
63
+ for step, batch in enumerate(train_dataloader):
64
+ batch = {k: v.to(self.device) for k, v in batch.items()}
65
+ outputs = self.model(**batch)
66
+ loss = outputs.loss / gradient_accumulation_steps # Normalize for accumulation
67
+
68
+ loss.backward()
69
+ if (step + 1) % gradient_accumulation_steps == 0:
70
+ optimizer.step()
71
+ optimizer.zero_grad()
72
+
73
+ total_loss += loss.item() * gradient_accumulation_steps
74
+
75
+ avg_loss = total_loss / len(train_dataloader)
76
+ print(f"Epoch {epoch+1}/{epochs}, Train Loss: {avg_loss:.4f}")
77
+
78
+ # Optional evaluation
79
+ if eval_dataloader:
80
+ eval_loss = self._evaluate(eval_dataloader)
81
+ print(f"Eval Loss: {eval_loss:.4f}")
82
+ except Exception as e:
83
+ print(f"Error during fine-tuning: {e}")
84
+ raise
85
+
86
+ def _evaluate(self, dataloader: DataLoader):
87
+ """Evaluate the model on a DataLoader."""
88
+ self.model.eval()
89
+ total_loss = 0
90
+ with torch.no_grad():
91
+ for batch in dataloader:
92
+ batch = {k: v.to(self.device) for k, v in batch.items()}
93
+ outputs = self.model(**batch)
94
+ total_loss += outputs.loss.item()
95
+ self.model.train()
96
+ return total_loss / len(dataloader)
97
+
98
+ def save_model(self, save_path: str):
99
+ """Save model and tokenizer."""
100
+ try:
101
+ os.makedirs(save_path, exist_ok=True)
102
+ self.model.save_pretrained(save_path)
103
+ self.tokenizer.save_pretrained(save_path)
104
+ print(f"Model saved to {save_path}")
105
+ except Exception as e:
106
+ print(f"Error saving model: {e}")
107
+
108
+ def load_model(self, load_path: str):
109
+ """Load model and tokenizer from a path."""
110
+ try:
111
+ self.model = AutoModelForCausalLM.from_pretrained(
112
+ load_path, torch_dtype=torch.bfloat16, device_map="auto"
113
+ ).to(self.device)
114
+ self.tokenizer = AutoTokenizer.from_pretrained(load_path)
115
+ if self.tokenizer.pad_token is None:
116
+ self.tokenizer.pad_token = self.tokenizer.eos_token
117
+ print(f"Model loaded from {load_path}")
118
+ except Exception as e:
119
+ print(f"Error loading model: {e}")
120
+ raise
121
+
122
+ def quantize_model(self, bits: int = 8):
123
+ """Quantize model for efficiency (basic dynamic quantization)."""
124
+ try:
125
+ if bits != 8:
126
+ print("⚠️ Only 8-bit quantization supported with torch.qint8")
127
+ self.model = torch.quantization.quantize_dynamic(
128
+ self.model, {nn.Linear}, dtype=torch.qint8
129
+ )
130
+ print("Model quantized to 8 bits (dynamic quantization)")
131
+ except Exception as e:
132
+ print(f"Error quantizing model: {e}")
133
+
134
+ if __name__ == "__main__":
135
+ # Example usage with your prior setup
136
+ model = Charm15Model(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
137
+
138
+ # Generate text
139
+ prompt = "Charm 15 is amazing because"
140
+ text = model.generate_text(prompt)
141
+ print(f"Generated: {text}")
142
+
143
+ # Assuming DataLoader from your earlier code
144
+ from your_dataloader_script import DataLoaderHandler # Adjust import
145
+ train_loader = DataLoaderHandler(
146
+ "../datasets/eclipse_corpuz_1.1.jsonl",
147
+ "../finetuned_charm15/tokenizer.json",
148
+ batch_size=4
149
+ ).get_dataloader()
150
+
151
+ # Fine-tune
152
+ model.fine_tune(train_loader)
153
+
154
+ # Save
155
+ model.save_model("../finetuned_charm15")
156
+
157
+ # Quantize for 6G edge
158
+ model.quantize_model()
159
+
160
+ # Reload and test
161
+ model.load_model("../finetuned_charm15")
162
+ print(model.generate_text("Testing reloaded model"))