Create data_loader.py
Browse files- data_loader.py +63 -0
data_loader.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import datasets
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
from transformers import PreTrainedTokenizerFast
|
7 |
+
|
8 |
+
class CustomDataset(Dataset):
|
9 |
+
def __init__(self, data, tokenizer, max_length=512):
|
10 |
+
self.data = data
|
11 |
+
self.tokenizer = tokenizer
|
12 |
+
self.max_length = max_length
|
13 |
+
|
14 |
+
def __len__(self):
|
15 |
+
return len(self.data)
|
16 |
+
|
17 |
+
def __getitem__(self, idx):
|
18 |
+
text = self.data[idx]["text"]
|
19 |
+
inputs = self.tokenizer(
|
20 |
+
text,
|
21 |
+
max_length=self.max_length,
|
22 |
+
padding="max_length",
|
23 |
+
truncation=True,
|
24 |
+
return_tensors="pt"
|
25 |
+
)
|
26 |
+
return {
|
27 |
+
"input_ids": inputs["input_ids"].squeeze(0),
|
28 |
+
"attention_mask": inputs["attention_mask"].squeeze(0)
|
29 |
+
}
|
30 |
+
|
31 |
+
class DataLoaderHandler:
|
32 |
+
def __init__(self, dataset_path, tokenizer_path, batch_size=8, max_length=512):
|
33 |
+
self.dataset_path = dataset_path
|
34 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path)
|
35 |
+
self.batch_size = batch_size
|
36 |
+
self.max_length = max_length
|
37 |
+
|
38 |
+
def load_dataset(self):
|
39 |
+
if self.dataset_path.endswith(".json"):
|
40 |
+
with open(self.dataset_path, "r", encoding="utf-8") as f:
|
41 |
+
data = json.load(f)
|
42 |
+
elif self.dataset_path.endswith(".jsonl"):
|
43 |
+
data = [json.loads(line) for line in open(self.dataset_path, "r", encoding="utf-8")]
|
44 |
+
else:
|
45 |
+
raise ValueError("Unsupported dataset format. Use JSON or JSONL.")
|
46 |
+
return data
|
47 |
+
|
48 |
+
def get_dataloader(self):
|
49 |
+
data = self.load_dataset()
|
50 |
+
dataset = CustomDataset(data, self.tokenizer, self.max_length)
|
51 |
+
return DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
dataset_path = "data/dataset.jsonl" # Update with actual dataset path
|
55 |
+
tokenizer_path = "tokenizer.json" # Update with actual tokenizer path
|
56 |
+
batch_size = 16
|
57 |
+
|
58 |
+
data_loader_handler = DataLoaderHandler(dataset_path, tokenizer_path, batch_size)
|
59 |
+
dataloader = data_loader_handler.get_dataloader()
|
60 |
+
|
61 |
+
for batch in dataloader:
|
62 |
+
print(batch["input_ids"].shape, batch["attention_mask"].shape)
|
63 |
+
break
|