|
import os |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments |
|
from datasets import load_dataset |
|
|
|
def load_model_and_tokenizer(model_name): |
|
""" |
|
Load the model and tokenizer. |
|
""" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
def load_and_tokenize_dataset(dataset_name, tokenizer, max_length=512): |
|
""" |
|
Load and tokenize the dataset. |
|
""" |
|
dataset = load_dataset(dataset_name) |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=max_length) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
return tokenized_datasets |
|
|
|
def setup_training_args(output_dir="./results", per_device_train_batch_size=2, per_device_eval_batch_size=2, |
|
gradient_accumulation_steps=8, num_train_epochs=3, learning_rate=5e-5, weight_decay=0.01, |
|
warmup_steps=500, logging_steps=100, fp16=True): |
|
""" |
|
Set up training arguments. |
|
""" |
|
training_args = TrainingArguments( |
|
output_dir=output_dir, |
|
evaluation_strategy="epoch", |
|
per_device_train_batch_size=per_device_train_batch_size, |
|
per_device_eval_batch_size=per_device_eval_batch_size, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
num_train_epochs=num_train_epochs, |
|
save_strategy="epoch", |
|
save_total_limit=2, |
|
logging_dir="./logs", |
|
logging_steps=logging_steps, |
|
report_to="none", |
|
fp16=fp16, |
|
learning_rate=learning_rate, |
|
weight_decay=weight_decay, |
|
warmup_steps=warmup_steps, |
|
dataloader_num_workers=4, |
|
push_to_hub=False |
|
) |
|
return training_args |
|
|
|
def save_model_and_tokenizer(model, tokenizer, save_dir): |
|
""" |
|
Save the model and tokenizer. |
|
""" |
|
os.makedirs(save_dir, exist_ok=True) |
|
model.save_pretrained(save_dir) |
|
tokenizer.save_pretrained(save_dir) |
|
print(f"Model and tokenizer saved at {save_dir}") |