Create utilis.py
Browse files
utilis.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
def load_model_and_tokenizer(model_name):
|
6 |
+
"""
|
7 |
+
Load the model and tokenizer.
|
8 |
+
"""
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
return model, tokenizer
|
12 |
+
|
13 |
+
def load_and_tokenize_dataset(dataset_name, tokenizer, max_length=512):
|
14 |
+
"""
|
15 |
+
Load and tokenize the dataset.
|
16 |
+
"""
|
17 |
+
dataset = load_dataset(dataset_name)
|
18 |
+
|
19 |
+
def tokenize_function(examples):
|
20 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=max_length)
|
21 |
+
|
22 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
23 |
+
return tokenized_datasets
|
24 |
+
|
25 |
+
def setup_training_args(output_dir="./results", per_device_train_batch_size=2, per_device_eval_batch_size=2,
|
26 |
+
gradient_accumulation_steps=8, num_train_epochs=3, learning_rate=5e-5, weight_decay=0.01,
|
27 |
+
warmup_steps=500, logging_steps=100, fp16=True):
|
28 |
+
"""
|
29 |
+
Set up training arguments.
|
30 |
+
"""
|
31 |
+
training_args = TrainingArguments(
|
32 |
+
output_dir=output_dir,
|
33 |
+
evaluation_strategy="epoch",
|
34 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
35 |
+
per_device_eval_batch_size=per_device_eval_batch_size,
|
36 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
37 |
+
num_train_epochs=num_train_epochs,
|
38 |
+
save_strategy="epoch",
|
39 |
+
save_total_limit=2,
|
40 |
+
logging_dir="./logs",
|
41 |
+
logging_steps=logging_steps,
|
42 |
+
report_to="none",
|
43 |
+
fp16=fp16,
|
44 |
+
learning_rate=learning_rate,
|
45 |
+
weight_decay=weight_decay,
|
46 |
+
warmup_steps=warmup_steps,
|
47 |
+
dataloader_num_workers=4,
|
48 |
+
push_to_hub=False
|
49 |
+
)
|
50 |
+
return training_args
|
51 |
+
|
52 |
+
def save_model_and_tokenizer(model, tokenizer, save_dir):
|
53 |
+
"""
|
54 |
+
Save the model and tokenizer.
|
55 |
+
"""
|
56 |
+
os.makedirs(save_dir, exist_ok=True)
|
57 |
+
model.save_pretrained(save_dir)
|
58 |
+
tokenizer.save_pretrained(save_dir)
|
59 |
+
print(f"Model and tokenizer saved at {save_dir}")
|