Charm_15 / model.py
GeminiFan207's picture
Create model.py
434d0b4 verified
raw
history blame
6.73 kB
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast
from torch.utils.data import DataLoader
class Charm15Model(nn.Module):
def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
"""Initialize Charm 15 with a pretrained model."""
super(Charm15Model, self).__init__()
self.device = device
self.model_name = model_name
try:
# Load tokenizer with padding fix
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
# Load model with optimizations
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16, # Memory-efficient
device_map="auto", # Auto-distribute
low_cpu_mem_usage=True
).to(self.device)
print(f"Loaded model {model_name} on {self.device}")
except Exception as e:
print(f"Error initializing model/tokenizer: {e}")
raise
def generate_text(self, prompt: str, max_length: int = 2048, temperature: float = 0.7,
top_k: int = 50, top_p: float = 0.9):
"""Generate text with the model."""
try:
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
output = self.model.generate(
**inputs,
max_length=max_length, # Matches your config
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True, # From your generation config
repetition_penalty=1.1, # Anti-repetition
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True # Speed up
)
return self.tokenizer.decode(output[0], skip_special_tokens=True)
except Exception as e:
print(f"Error generating text: {e}")
return None
def fine_tune(self, train_dataloader: DataLoader, eval_dataloader: DataLoader = None,
epochs: int = 3, lr: float = 5e-5, gradient_accumulation_steps: int = 4):
"""Fine-tune the model with a DataLoader."""
optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr)
self.model.train()
try:
for epoch in range(epochs):
total_loss = 0
for step, batch in enumerate(train_dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
loss = outputs.loss / gradient_accumulation_steps # Normalize for accumulation
loss.backward()
if (step + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
total_loss += loss.item() * gradient_accumulation_steps
avg_loss = total_loss / len(train_dataloader)
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {avg_loss:.4f}")
# Optional evaluation
if eval_dataloader:
eval_loss = self._evaluate(eval_dataloader)
print(f"Eval Loss: {eval_loss:.4f}")
except Exception as e:
print(f"Error during fine-tuning: {e}")
raise
def _evaluate(self, dataloader: DataLoader):
"""Evaluate the model on a DataLoader."""
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch in dataloader:
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
total_loss += outputs.loss.item()
self.model.train()
return total_loss / len(dataloader)
def save_model(self, save_path: str):
"""Save model and tokenizer."""
try:
os.makedirs(save_path, exist_ok=True)
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
print(f"Model saved to {save_path}")
except Exception as e:
print(f"Error saving model: {e}")
def load_model(self, load_path: str):
"""Load model and tokenizer from a path."""
try:
self.model = AutoModelForCausalLM.from_pretrained(
load_path, torch_dtype=torch.bfloat16, device_map="auto"
).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(load_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"Model loaded from {load_path}")
except Exception as e:
print(f"Error loading model: {e}")
raise
def quantize_model(self, bits: int = 8):
"""Quantize model for efficiency (basic dynamic quantization)."""
try:
if bits != 8:
print("⚠️ Only 8-bit quantization supported with torch.qint8")
self.model = torch.quantization.quantize_dynamic(
self.model, {nn.Linear}, dtype=torch.qint8
)
print("Model quantized to 8 bits (dynamic quantization)")
except Exception as e:
print(f"Error quantizing model: {e}")
if __name__ == "__main__":
# Example usage with your prior setup
model = Charm15Model(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
# Generate text
prompt = "Charm 15 is amazing because"
text = model.generate_text(prompt)
print(f"Generated: {text}")
# Assuming DataLoader from your earlier code
from your_dataloader_script import DataLoaderHandler # Adjust import
train_loader = DataLoaderHandler(
"../datasets/eclipse_corpuz_1.1.jsonl",
"../finetuned_charm15/tokenizer.json",
batch_size=4
).get_dataloader()
# Fine-tune
model.fine_tune(train_loader)
# Save
model.save_model("../finetuned_charm15")
# Quantize for 6G edge
model.quantize_model()
# Reload and test
model.load_model("../finetuned_charm15")
print(model.generate_text("Testing reloaded model"))