Charm_15 / parameters.py
GeminiFan207's picture
Create parameters.py
0fcb291 verified
raw
history blame
5.86 kB
import torch
import safetensors.torch
import concurrent.futures
import zlib
import logging
from typing import Dict, Tuple
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler()]
)
class AdvancedModelParameters:
def __init__(self, num_shards=2089, base_filename="charm15", hidden_size=16384, layers_per_shard=100):
"""Initialize model parameters for a massive transformer model."""
self.num_shards = num_shards
self.base_filename = base_filename
self.hidden_size = hidden_size
self.layers_per_shard = layers_per_shard
self.ffn_multiplier = 4
self.shape = (hidden_size, hidden_size)
self.dtype = torch.float16
self.base_path = Path("model_shards")
self.base_path.mkdir(parents=True, exist_ok=True)
def generate_layer_parameters(self, layer_idx: int) -> Dict[str, torch.Tensor]:
"""Generate parameters for a single transformer layer."""
params = {}
prefix = f"layer_{layer_idx}"
# Attention weights (Q, K, V, O)
for name in ["query_weight", "key_weight", "value_weight", "output_weight"]:
params[f"{prefix}.attention.{name}"] = torch.randn(
self.shape, dtype=self.dtype
) * (1.0 / self.hidden_size ** 0.5)
# FFN weights
intermediate_size = self.hidden_size * self.ffn_multiplier
params[f"{prefix}.ffn.intermediate_weight"] = torch.randn(
self.hidden_size, intermediate_size, dtype=self.dtype
) * (1.0 / self.hidden_size ** 0.5)
params[f"{prefix}.ffn.output_weight"] = torch.randn(
intermediate_size, self.hidden_size, dtype=self.dtype
) * (1.0 / intermediate_size ** 0.5)
return params
def generate_shard_parameters(self, shard_index: int) -> Dict[str, torch.Tensor]:
"""Generate parameters for a single shard."""
params = {}
start_layer = (shard_index - 1) * self.layers_per_shard
end_layer = start_layer + self.layers_per_shard
# Generate layers for this shard
for layer_idx in range(start_layer, end_layer):
params.update(self.generate_layer_parameters(layer_idx))
# Add embeddings and output layer to the first shard
if shard_index == 1:
params["embedding.word_embeddings"] = torch.randn(
50000, self.hidden_size, dtype=self.dtype
) * (1.0 / self.hidden_size ** 0.5)
params["embedding.position_embeddings"] = torch.randn(
4096, self.hidden_size, dtype=self.dtype
) * (1.0 / self.hidden_size ** 0.5)
params["output_layer"] = torch.randn(
self.hidden_size, 50000, dtype=self.dtype
) * (1.0 / self.hidden_size ** 0.5)
return params
def compress_tensor(self, tensor: torch.Tensor) -> bytes:
"""Apply zlib compression to tensor data."""
tensor_bytes = tensor.numpy().tobytes()
return zlib.compress(tensor_bytes, level=9)
def save_single_shard(self, shard_index: int) -> None:
"""Save a single model shard with compression."""
params = self.generate_shard_parameters(shard_index)
filename = self.base_path / f"{self.base_filename}_{shard_index}_of_{self.num_shards}.safetensors"
# Compress tensors
compressed_data = {key: self.compress_tensor(value) for key, value in params.items()}
# Save with metadata
metadata = {
"shard_index": shard_index,
"total_shards": self.num_shards,
"layers": self.layers_per_shard,
"hidden_size": self.hidden_size
}
safetensors.torch.save_file(compressed_data, str(filename), metadata=metadata)
logging.info(f"[✔] Shard {shard_index}/{self.num_shards} saved: {filename}")
def save_sharded_parameters(self) -> None:
"""Save all shards in parallel."""
logging.info(f"Starting to save {self.num_shards} shards...")
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(self.save_single_shard, range(1, self.num_shards + 1))
logging.info("All shards saved successfully.")
def estimate_parameters(self) -> Tuple[int, float]:
"""Estimate total parameters and memory usage."""
params_per_layer = (
4 * (self.hidden_size * self.hidden_size) + # Attention weights
self.hidden_size * (self.hidden_size * self.ffn_multiplier) + # FFN intermediate
(self.hidden_size * self.ffn_multiplier) * self.hidden_size # FFN output
)
params_per_shard = params_per_layer * self.layers_per_shard
total_params = params_per_shard * self.num_shards
# Add embedding and output layer from first shard
total_params += (
50000 * self.hidden_size + # word_embeddings
4096 * self.hidden_size + # position_embeddings
self.hidden_size * 50000 # output_layer
)
memory_gb = (total_params * 2) / 1024**3 # 2 bytes per float16
return total_params, memory_gb
def main():
"""Main execution flow."""
model_storage = AdvancedModelParameters(
num_shards=2089,
base_filename="charm15",
hidden_size=16384,
layers_per_shard=100
)
# Estimate parameters
total_params, memory_gb = model_storage.estimate_parameters()
logging.info(f"Estimated total parameters: {total_params:,}")
logging.info(f"Estimated memory usage: {memory_gb:.2f} GB")
# Save shards
model_storage.save_sharded_parameters()
if __name__ == "__main__":
main()