Create parameters.py
Browse files- parameters.py +143 -0
parameters.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import safetensors.torch
|
3 |
+
import concurrent.futures
|
4 |
+
import zlib
|
5 |
+
import logging
|
6 |
+
from typing import Dict, Tuple
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
13 |
+
handlers=[logging.StreamHandler()]
|
14 |
+
)
|
15 |
+
|
16 |
+
class AdvancedModelParameters:
|
17 |
+
def __init__(self, num_shards=2089, base_filename="charm15", hidden_size=16384, layers_per_shard=100):
|
18 |
+
"""Initialize model parameters for a massive transformer model."""
|
19 |
+
self.num_shards = num_shards
|
20 |
+
self.base_filename = base_filename
|
21 |
+
self.hidden_size = hidden_size
|
22 |
+
self.layers_per_shard = layers_per_shard
|
23 |
+
self.ffn_multiplier = 4
|
24 |
+
self.shape = (hidden_size, hidden_size)
|
25 |
+
self.dtype = torch.float16
|
26 |
+
self.base_path = Path("model_shards")
|
27 |
+
self.base_path.mkdir(parents=True, exist_ok=True)
|
28 |
+
|
29 |
+
def generate_layer_parameters(self, layer_idx: int) -> Dict[str, torch.Tensor]:
|
30 |
+
"""Generate parameters for a single transformer layer."""
|
31 |
+
params = {}
|
32 |
+
prefix = f"layer_{layer_idx}"
|
33 |
+
|
34 |
+
# Attention weights (Q, K, V, O)
|
35 |
+
for name in ["query_weight", "key_weight", "value_weight", "output_weight"]:
|
36 |
+
params[f"{prefix}.attention.{name}"] = torch.randn(
|
37 |
+
self.shape, dtype=self.dtype
|
38 |
+
) * (1.0 / self.hidden_size ** 0.5)
|
39 |
+
|
40 |
+
# FFN weights
|
41 |
+
intermediate_size = self.hidden_size * self.ffn_multiplier
|
42 |
+
params[f"{prefix}.ffn.intermediate_weight"] = torch.randn(
|
43 |
+
self.hidden_size, intermediate_size, dtype=self.dtype
|
44 |
+
) * (1.0 / self.hidden_size ** 0.5)
|
45 |
+
params[f"{prefix}.ffn.output_weight"] = torch.randn(
|
46 |
+
intermediate_size, self.hidden_size, dtype=self.dtype
|
47 |
+
) * (1.0 / intermediate_size ** 0.5)
|
48 |
+
|
49 |
+
return params
|
50 |
+
|
51 |
+
def generate_shard_parameters(self, shard_index: int) -> Dict[str, torch.Tensor]:
|
52 |
+
"""Generate parameters for a single shard."""
|
53 |
+
params = {}
|
54 |
+
start_layer = (shard_index - 1) * self.layers_per_shard
|
55 |
+
end_layer = start_layer + self.layers_per_shard
|
56 |
+
|
57 |
+
# Generate layers for this shard
|
58 |
+
for layer_idx in range(start_layer, end_layer):
|
59 |
+
params.update(self.generate_layer_parameters(layer_idx))
|
60 |
+
|
61 |
+
# Add embeddings and output layer to the first shard
|
62 |
+
if shard_index == 1:
|
63 |
+
params["embedding.word_embeddings"] = torch.randn(
|
64 |
+
50000, self.hidden_size, dtype=self.dtype
|
65 |
+
) * (1.0 / self.hidden_size ** 0.5)
|
66 |
+
params["embedding.position_embeddings"] = torch.randn(
|
67 |
+
4096, self.hidden_size, dtype=self.dtype
|
68 |
+
) * (1.0 / self.hidden_size ** 0.5)
|
69 |
+
params["output_layer"] = torch.randn(
|
70 |
+
self.hidden_size, 50000, dtype=self.dtype
|
71 |
+
) * (1.0 / self.hidden_size ** 0.5)
|
72 |
+
|
73 |
+
return params
|
74 |
+
|
75 |
+
def compress_tensor(self, tensor: torch.Tensor) -> bytes:
|
76 |
+
"""Apply zlib compression to tensor data."""
|
77 |
+
tensor_bytes = tensor.numpy().tobytes()
|
78 |
+
return zlib.compress(tensor_bytes, level=9)
|
79 |
+
|
80 |
+
def save_single_shard(self, shard_index: int) -> None:
|
81 |
+
"""Save a single model shard with compression."""
|
82 |
+
params = self.generate_shard_parameters(shard_index)
|
83 |
+
filename = self.base_path / f"{self.base_filename}_{shard_index}_of_{self.num_shards}.safetensors"
|
84 |
+
|
85 |
+
# Compress tensors
|
86 |
+
compressed_data = {key: self.compress_tensor(value) for key, value in params.items()}
|
87 |
+
|
88 |
+
# Save with metadata
|
89 |
+
metadata = {
|
90 |
+
"shard_index": shard_index,
|
91 |
+
"total_shards": self.num_shards,
|
92 |
+
"layers": self.layers_per_shard,
|
93 |
+
"hidden_size": self.hidden_size
|
94 |
+
}
|
95 |
+
safetensors.torch.save_file(compressed_data, str(filename), metadata=metadata)
|
96 |
+
logging.info(f"[✔] Shard {shard_index}/{self.num_shards} saved: {filename}")
|
97 |
+
|
98 |
+
def save_sharded_parameters(self) -> None:
|
99 |
+
"""Save all shards in parallel."""
|
100 |
+
logging.info(f"Starting to save {self.num_shards} shards...")
|
101 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
102 |
+
executor.map(self.save_single_shard, range(1, self.num_shards + 1))
|
103 |
+
logging.info("All shards saved successfully.")
|
104 |
+
|
105 |
+
def estimate_parameters(self) -> Tuple[int, float]:
|
106 |
+
"""Estimate total parameters and memory usage."""
|
107 |
+
params_per_layer = (
|
108 |
+
4 * (self.hidden_size * self.hidden_size) + # Attention weights
|
109 |
+
self.hidden_size * (self.hidden_size * self.ffn_multiplier) + # FFN intermediate
|
110 |
+
(self.hidden_size * self.ffn_multiplier) * self.hidden_size # FFN output
|
111 |
+
)
|
112 |
+
params_per_shard = params_per_layer * self.layers_per_shard
|
113 |
+
total_params = params_per_shard * self.num_shards
|
114 |
+
|
115 |
+
# Add embedding and output layer from first shard
|
116 |
+
total_params += (
|
117 |
+
50000 * self.hidden_size + # word_embeddings
|
118 |
+
4096 * self.hidden_size + # position_embeddings
|
119 |
+
self.hidden_size * 50000 # output_layer
|
120 |
+
)
|
121 |
+
|
122 |
+
memory_gb = (total_params * 2) / 1024**3 # 2 bytes per float16
|
123 |
+
return total_params, memory_gb
|
124 |
+
|
125 |
+
def main():
|
126 |
+
"""Main execution flow."""
|
127 |
+
model_storage = AdvancedModelParameters(
|
128 |
+
num_shards=2089,
|
129 |
+
base_filename="charm15",
|
130 |
+
hidden_size=16384,
|
131 |
+
layers_per_shard=100
|
132 |
+
)
|
133 |
+
|
134 |
+
# Estimate parameters
|
135 |
+
total_params, memory_gb = model_storage.estimate_parameters()
|
136 |
+
logging.info(f"Estimated total parameters: {total_params:,}")
|
137 |
+
logging.info(f"Estimated memory usage: {memory_gb:.2f} GB")
|
138 |
+
|
139 |
+
# Save shards
|
140 |
+
model_storage.save_sharded_parameters()
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
main()
|