GeminiFan207 commited on
Commit
0fcb291
·
verified ·
1 Parent(s): ced2d25

Create parameters.py

Browse files
Files changed (1) hide show
  1. parameters.py +143 -0
parameters.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import safetensors.torch
3
+ import concurrent.futures
4
+ import zlib
5
+ import logging
6
+ from typing import Dict, Tuple
7
+ from pathlib import Path
8
+
9
+ # Configure logging
10
+ logging.basicConfig(
11
+ level=logging.INFO,
12
+ format="%(asctime)s - %(levelname)s - %(message)s",
13
+ handlers=[logging.StreamHandler()]
14
+ )
15
+
16
+ class AdvancedModelParameters:
17
+ def __init__(self, num_shards=2089, base_filename="charm15", hidden_size=16384, layers_per_shard=100):
18
+ """Initialize model parameters for a massive transformer model."""
19
+ self.num_shards = num_shards
20
+ self.base_filename = base_filename
21
+ self.hidden_size = hidden_size
22
+ self.layers_per_shard = layers_per_shard
23
+ self.ffn_multiplier = 4
24
+ self.shape = (hidden_size, hidden_size)
25
+ self.dtype = torch.float16
26
+ self.base_path = Path("model_shards")
27
+ self.base_path.mkdir(parents=True, exist_ok=True)
28
+
29
+ def generate_layer_parameters(self, layer_idx: int) -> Dict[str, torch.Tensor]:
30
+ """Generate parameters for a single transformer layer."""
31
+ params = {}
32
+ prefix = f"layer_{layer_idx}"
33
+
34
+ # Attention weights (Q, K, V, O)
35
+ for name in ["query_weight", "key_weight", "value_weight", "output_weight"]:
36
+ params[f"{prefix}.attention.{name}"] = torch.randn(
37
+ self.shape, dtype=self.dtype
38
+ ) * (1.0 / self.hidden_size ** 0.5)
39
+
40
+ # FFN weights
41
+ intermediate_size = self.hidden_size * self.ffn_multiplier
42
+ params[f"{prefix}.ffn.intermediate_weight"] = torch.randn(
43
+ self.hidden_size, intermediate_size, dtype=self.dtype
44
+ ) * (1.0 / self.hidden_size ** 0.5)
45
+ params[f"{prefix}.ffn.output_weight"] = torch.randn(
46
+ intermediate_size, self.hidden_size, dtype=self.dtype
47
+ ) * (1.0 / intermediate_size ** 0.5)
48
+
49
+ return params
50
+
51
+ def generate_shard_parameters(self, shard_index: int) -> Dict[str, torch.Tensor]:
52
+ """Generate parameters for a single shard."""
53
+ params = {}
54
+ start_layer = (shard_index - 1) * self.layers_per_shard
55
+ end_layer = start_layer + self.layers_per_shard
56
+
57
+ # Generate layers for this shard
58
+ for layer_idx in range(start_layer, end_layer):
59
+ params.update(self.generate_layer_parameters(layer_idx))
60
+
61
+ # Add embeddings and output layer to the first shard
62
+ if shard_index == 1:
63
+ params["embedding.word_embeddings"] = torch.randn(
64
+ 50000, self.hidden_size, dtype=self.dtype
65
+ ) * (1.0 / self.hidden_size ** 0.5)
66
+ params["embedding.position_embeddings"] = torch.randn(
67
+ 4096, self.hidden_size, dtype=self.dtype
68
+ ) * (1.0 / self.hidden_size ** 0.5)
69
+ params["output_layer"] = torch.randn(
70
+ self.hidden_size, 50000, dtype=self.dtype
71
+ ) * (1.0 / self.hidden_size ** 0.5)
72
+
73
+ return params
74
+
75
+ def compress_tensor(self, tensor: torch.Tensor) -> bytes:
76
+ """Apply zlib compression to tensor data."""
77
+ tensor_bytes = tensor.numpy().tobytes()
78
+ return zlib.compress(tensor_bytes, level=9)
79
+
80
+ def save_single_shard(self, shard_index: int) -> None:
81
+ """Save a single model shard with compression."""
82
+ params = self.generate_shard_parameters(shard_index)
83
+ filename = self.base_path / f"{self.base_filename}_{shard_index}_of_{self.num_shards}.safetensors"
84
+
85
+ # Compress tensors
86
+ compressed_data = {key: self.compress_tensor(value) for key, value in params.items()}
87
+
88
+ # Save with metadata
89
+ metadata = {
90
+ "shard_index": shard_index,
91
+ "total_shards": self.num_shards,
92
+ "layers": self.layers_per_shard,
93
+ "hidden_size": self.hidden_size
94
+ }
95
+ safetensors.torch.save_file(compressed_data, str(filename), metadata=metadata)
96
+ logging.info(f"[✔] Shard {shard_index}/{self.num_shards} saved: {filename}")
97
+
98
+ def save_sharded_parameters(self) -> None:
99
+ """Save all shards in parallel."""
100
+ logging.info(f"Starting to save {self.num_shards} shards...")
101
+ with concurrent.futures.ThreadPoolExecutor() as executor:
102
+ executor.map(self.save_single_shard, range(1, self.num_shards + 1))
103
+ logging.info("All shards saved successfully.")
104
+
105
+ def estimate_parameters(self) -> Tuple[int, float]:
106
+ """Estimate total parameters and memory usage."""
107
+ params_per_layer = (
108
+ 4 * (self.hidden_size * self.hidden_size) + # Attention weights
109
+ self.hidden_size * (self.hidden_size * self.ffn_multiplier) + # FFN intermediate
110
+ (self.hidden_size * self.ffn_multiplier) * self.hidden_size # FFN output
111
+ )
112
+ params_per_shard = params_per_layer * self.layers_per_shard
113
+ total_params = params_per_shard * self.num_shards
114
+
115
+ # Add embedding and output layer from first shard
116
+ total_params += (
117
+ 50000 * self.hidden_size + # word_embeddings
118
+ 4096 * self.hidden_size + # position_embeddings
119
+ self.hidden_size * 50000 # output_layer
120
+ )
121
+
122
+ memory_gb = (total_params * 2) / 1024**3 # 2 bytes per float16
123
+ return total_params, memory_gb
124
+
125
+ def main():
126
+ """Main execution flow."""
127
+ model_storage = AdvancedModelParameters(
128
+ num_shards=2089,
129
+ base_filename="charm15",
130
+ hidden_size=16384,
131
+ layers_per_shard=100
132
+ )
133
+
134
+ # Estimate parameters
135
+ total_params, memory_gb = model_storage.estimate_parameters()
136
+ logging.info(f"Estimated total parameters: {total_params:,}")
137
+ logging.info(f"Estimated memory usage: {memory_gb:.2f} GB")
138
+
139
+ # Save shards
140
+ model_storage.save_sharded_parameters()
141
+
142
+ if __name__ == "__main__":
143
+ main()