File size: 5,860 Bytes
0fcb291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import safetensors.torch
import concurrent.futures
import zlib
import logging
from typing import Dict, Tuple
from pathlib import Path

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler()]
)

class AdvancedModelParameters:
    def __init__(self, num_shards=2089, base_filename="charm15", hidden_size=16384, layers_per_shard=100):
        """Initialize model parameters for a massive transformer model."""
        self.num_shards = num_shards
        self.base_filename = base_filename
        self.hidden_size = hidden_size
        self.layers_per_shard = layers_per_shard
        self.ffn_multiplier = 4
        self.shape = (hidden_size, hidden_size)
        self.dtype = torch.float16
        self.base_path = Path("model_shards")
        self.base_path.mkdir(parents=True, exist_ok=True)

    def generate_layer_parameters(self, layer_idx: int) -> Dict[str, torch.Tensor]:
        """Generate parameters for a single transformer layer."""
        params = {}
        prefix = f"layer_{layer_idx}"
        
        # Attention weights (Q, K, V, O)
        for name in ["query_weight", "key_weight", "value_weight", "output_weight"]:
            params[f"{prefix}.attention.{name}"] = torch.randn(
                self.shape, dtype=self.dtype
            ) * (1.0 / self.hidden_size ** 0.5)
        
        # FFN weights
        intermediate_size = self.hidden_size * self.ffn_multiplier
        params[f"{prefix}.ffn.intermediate_weight"] = torch.randn(
            self.hidden_size, intermediate_size, dtype=self.dtype
        ) * (1.0 / self.hidden_size ** 0.5)
        params[f"{prefix}.ffn.output_weight"] = torch.randn(
            intermediate_size, self.hidden_size, dtype=self.dtype
        ) * (1.0 / intermediate_size ** 0.5)
        
        return params

    def generate_shard_parameters(self, shard_index: int) -> Dict[str, torch.Tensor]:
        """Generate parameters for a single shard."""
        params = {}
        start_layer = (shard_index - 1) * self.layers_per_shard
        end_layer = start_layer + self.layers_per_shard
        
        # Generate layers for this shard
        for layer_idx in range(start_layer, end_layer):
            params.update(self.generate_layer_parameters(layer_idx))
        
        # Add embeddings and output layer to the first shard
        if shard_index == 1:
            params["embedding.word_embeddings"] = torch.randn(
                50000, self.hidden_size, dtype=self.dtype
            ) * (1.0 / self.hidden_size ** 0.5)
            params["embedding.position_embeddings"] = torch.randn(
                4096, self.hidden_size, dtype=self.dtype
            ) * (1.0 / self.hidden_size ** 0.5)
            params["output_layer"] = torch.randn(
                self.hidden_size, 50000, dtype=self.dtype
            ) * (1.0 / self.hidden_size ** 0.5)
        
        return params

    def compress_tensor(self, tensor: torch.Tensor) -> bytes:
        """Apply zlib compression to tensor data."""
        tensor_bytes = tensor.numpy().tobytes()
        return zlib.compress(tensor_bytes, level=9)

    def save_single_shard(self, shard_index: int) -> None:
        """Save a single model shard with compression."""
        params = self.generate_shard_parameters(shard_index)
        filename = self.base_path / f"{self.base_filename}_{shard_index}_of_{self.num_shards}.safetensors"
        
        # Compress tensors
        compressed_data = {key: self.compress_tensor(value) for key, value in params.items()}
        
        # Save with metadata
        metadata = {
            "shard_index": shard_index,
            "total_shards": self.num_shards,
            "layers": self.layers_per_shard,
            "hidden_size": self.hidden_size
        }
        safetensors.torch.save_file(compressed_data, str(filename), metadata=metadata)
        logging.info(f"[✔] Shard {shard_index}/{self.num_shards} saved: {filename}")

    def save_sharded_parameters(self) -> None:
        """Save all shards in parallel."""
        logging.info(f"Starting to save {self.num_shards} shards...")
        with concurrent.futures.ThreadPoolExecutor() as executor:
            executor.map(self.save_single_shard, range(1, self.num_shards + 1))
        logging.info("All shards saved successfully.")

    def estimate_parameters(self) -> Tuple[int, float]:
        """Estimate total parameters and memory usage."""
        params_per_layer = (
            4 * (self.hidden_size * self.hidden_size) +  # Attention weights
            self.hidden_size * (self.hidden_size * self.ffn_multiplier) +  # FFN intermediate
            (self.hidden_size * self.ffn_multiplier) * self.hidden_size  # FFN output
        )
        params_per_shard = params_per_layer * self.layers_per_shard
        total_params = params_per_shard * self.num_shards
        
        # Add embedding and output layer from first shard
        total_params += (
            50000 * self.hidden_size +  # word_embeddings
            4096 * self.hidden_size +   # position_embeddings
            self.hidden_size * 50000    # output_layer
        )
        
        memory_gb = (total_params * 2) / 1024**3  # 2 bytes per float16
        return total_params, memory_gb

def main():
    """Main execution flow."""
    model_storage = AdvancedModelParameters(
        num_shards=2089,
        base_filename="charm15",
        hidden_size=16384,
        layers_per_shard=100
    )
    
    # Estimate parameters
    total_params, memory_gb = model_storage.estimate_parameters()
    logging.info(f"Estimated total parameters: {total_params:,}")
    logging.info(f"Estimated memory usage: {memory_gb:.2f} GB")
    
    # Save shards
    model_storage.save_sharded_parameters()

if __name__ == "__main__":
    main()