YuchengShi's picture
Update README.md
cc1f21f verified
---
base_model: llava-hf/llava-1.5-7b-hf
library_name: transformers
pipeline_tag: image-text-to-text
tags: []
---
# Fine-Grained Visual Classification on CUB-200
Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX).
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
This model is a fine-tuned multimodal foundation model developed on the [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) base, optimized for fine-grained visual classification and explainability using the CUB-200 dataset.
## Key Details
- **Base Model:** LLaVA-1.5-7B
- **Dataset:** CUB-200 (Caltech-UCSD Birds-200-2011)
- **Innovation:**
- **Self-Synthesized Data:** Generates interpretable explanations by extracting image-specific visual concepts using the Information Bottleneck principle.
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to progressively improve classification accuracy and explanation quality.
- **Intended Use:** Fine-grained bird species identification with human-verifiable explanations.
## How to Use
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "YuchengShi/LLaVA-v1.5-7B-CUB-200"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What is the bird name? Give your reasoning"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "https://www.allaboutbirds.org/guide/assets/photo/297602831-1280px.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to("cuda", torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
## Training & Evaluation
- **Training:** Fine-tuned using LoRA on CUB-200 with iterative rejection sampling.
- **Evaluation:** Demonstrates higher accuracy and robust, interpretable explanations compared to baseline models.
## Citation
If you use this model, please cite:
```bibtex
@inproceedings{
shi2025enhancing,
title={Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data},
author={Yucheng Shi and Quanzheng Li and Jin Sun and Xiang Li and Ninghao Liu},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=lHbLpwbEyt}
}
```