|
--- |
|
library_name: transformers.js |
|
tags: |
|
- pose-estimation |
|
license: agpl-3.0 |
|
--- |
|
|
|
YOLOv8n-pose with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Perform pose-estimation w/ `Xenova/yolov8n-pose`. |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; |
|
|
|
// Load model and processor |
|
const model_id = 'Xenova/yolov8n-pose'; |
|
const model = await AutoModel.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
|
|
// Read image and run processor |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; |
|
const image = await RawImage.read(url); |
|
const { pixel_values } = await processor(image); |
|
|
|
// Set thresholds |
|
const threshold = 0.3; // Remove detections with low confidence |
|
const iouThreshold = 0.5; // Used to remove duplicates |
|
const pointThreshold = 0.3; // Hide uncertain points |
|
|
|
// Predict bounding boxes and keypoints |
|
const { output0 } = await model({ images: pixel_values }); |
|
|
|
// Post-process: |
|
const permuted = output0[0].transpose(1, 0); |
|
// `permuted` is a Tensor of shape [ 8400, 56 ]: |
|
// - 8400 potential detections |
|
// - 56 parameters for each box: |
|
// - 4 for the bounding box dimensions (x-center, y-center, width, height) |
|
// - 1 for the confidence score |
|
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) |
|
|
|
// Example code to format it nicely: |
|
const results = []; |
|
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); |
|
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { |
|
if (score < threshold) continue; |
|
|
|
// Get pixel values, taking into account the original image size |
|
const x1 = (xc - w / 2) / scaledWidth * image.width; |
|
const y1 = (yc - h / 2) / scaledHeight * image.height; |
|
const x2 = (xc + w / 2) / scaledWidth * image.width; |
|
const y2 = (yc + h / 2) / scaledHeight * image.height; |
|
results.push({ x1, x2, y1, y2, score, keypoints }) |
|
} |
|
|
|
|
|
// Define helper functions |
|
function removeDuplicates(detections, iouThreshold) { |
|
const filteredDetections = []; |
|
|
|
for (const detection of detections) { |
|
let isDuplicate = false; |
|
let duplicateIndex = -1; |
|
let maxIoU = 0; |
|
|
|
for (let i = 0; i < filteredDetections.length; ++i) { |
|
const filteredDetection = filteredDetections[i]; |
|
const iou = calculateIoU(detection, filteredDetection); |
|
if (iou > iouThreshold) { |
|
isDuplicate = true; |
|
if (iou > maxIoU) { |
|
maxIoU = iou; |
|
duplicateIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (!isDuplicate) { |
|
filteredDetections.push(detection); |
|
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { |
|
filteredDetections[duplicateIndex] = detection; |
|
} |
|
} |
|
|
|
return filteredDetections; |
|
} |
|
|
|
function calculateIoU(detection1, detection2) { |
|
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); |
|
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); |
|
const overlapArea = xOverlap * yOverlap; |
|
|
|
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); |
|
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); |
|
const unionArea = area1 + area2 - overlapArea; |
|
|
|
return overlapArea / unionArea; |
|
} |
|
|
|
const filteredResults = removeDuplicates(results, iouThreshold); |
|
|
|
// Display results |
|
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { |
|
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`) |
|
for (let i = 0; i < keypoints.length; i += 3) { |
|
const label = model.config.id2label[Math.floor(i / 3)]; |
|
const [x, y, point_score] = keypoints.slice(i, i + 3); |
|
if (point_score < pointThreshold) continue; |
|
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); |
|
} |
|
} |
|
``` |
|
|
|
<details> |
|
|
|
<summary>See example output</summary> |
|
|
|
``` |
|
Found person at [536.1322975158691, 37.87850737571716, 645.2879905700684, 286.9420547962189] with score 0.791 |
|
- nose: (445.81, 87.11) with score 0.936 |
|
- left_eye: (450.90, 80.87) with score 0.976 |
|
- right_eye: (439.37, 81.31) with score 0.664 |
|
- left_ear: (460.76, 81.94) with score 0.945 |
|
- left_shoulder: (478.06, 126.18) with score 0.993 |
|
- right_shoulder: (420.69, 125.17) with score 0.469 |
|
- left_elbow: (496.96, 178.36) with score 0.976 |
|
- left_wrist: (509.41, 232.75) with score 0.892 |
|
- left_hip: (469.15, 215.80) with score 0.980 |
|
- right_hip: (433.73, 218.39) with score 0.794 |
|
- left_knee: (471.45, 278.44) with score 0.969 |
|
- right_knee: (439.23, 281.77) with score 0.701 |
|
- left_ankle: (474.88, 345.49) with score 0.913 |
|
- right_ankle: (441.99, 339.82) with score 0.664 |
|
Found person at [-0.15300750732421875, 59.96129276752472, 158.73897552490234, 369.92224643230435] with score 0.863 |
|
- nose: (57.30, 95.37) with score 0.960 |
|
- left_eye: (63.85, 89.48) with score 0.889 |
|
- right_eye: (53.59, 91.60) with score 0.909 |
|
- left_ear: (73.54, 92.67) with score 0.626 |
|
- right_ear: (50.12, 95.95) with score 0.674 |
|
- left_shoulder: (87.62, 132.72) with score 0.965 |
|
- right_shoulder: (39.72, 136.82) with score 0.986 |
|
- left_elbow: (108.17, 186.58) with score 0.857 |
|
- right_elbow: (21.47, 184.66) with score 0.951 |
|
- left_wrist: (113.36, 244.21) with score 0.822 |
|
- right_wrist: (8.04, 240.50) with score 0.915 |
|
- left_hip: (83.47, 234.43) with score 0.990 |
|
- right_hip: (47.29, 237.45) with score 0.994 |
|
- left_knee: (92.12, 324.78) with score 0.985 |
|
- right_knee: (50.70, 325.75) with score 0.991 |
|
- left_ankle: (101.13, 410.45) with score 0.933 |
|
- right_ankle: (49.62, 410.14) with score 0.954 |
|
Found person at [104.13589477539062, 20.16922025680542, 505.84068298339844, 522.6950127601624] with score 0.770 |
|
- nose: (132.51, 99.38) with score 0.693 |
|
- left_eye: (138.68, 89.00) with score 0.451 |
|
- left_ear: (145.60, 85.21) with score 0.766 |
|
- left_shoulder: (188.92, 133.25) with score 0.996 |
|
- right_shoulder: (163.12, 158.90) with score 0.985 |
|
- left_elbow: (263.01, 205.18) with score 0.991 |
|
- right_elbow: (181.52, 249.12) with score 0.949 |
|
- left_wrist: (315.65, 259.88) with score 0.964 |
|
- right_wrist: (125.19, 275.10) with score 0.891 |
|
- left_hip: (279.47, 294.29) with score 0.998 |
|
- right_hip: (266.84, 309.38) with score 0.997 |
|
- left_knee: (261.67, 416.57) with score 0.989 |
|
- right_knee: (256.66, 428.75) with score 0.982 |
|
- left_ankle: (322.92, 454.74) with score 0.805 |
|
- right_ankle: (339.15, 459.64) with score 0.780 |
|
Found person at [423.3617973327637, 72.75799512863159, 638.2988166809082, 513.1156357765198] with score 0.903 |
|
- nose: (417.19, 137.27) with score 0.992 |
|
- left_eye: (429.74, 127.59) with score 0.975 |
|
- right_eye: (409.83, 129.06) with score 0.961 |
|
- left_ear: (445.81, 133.82) with score 0.847 |
|
- right_ear: (399.09, 132.99) with score 0.711 |
|
- left_shoulder: (451.43, 195.71) with score 0.997 |
|
- right_shoulder: (372.58, 196.25) with score 0.995 |
|
- left_elbow: (463.89, 286.56) with score 0.991 |
|
- right_elbow: (351.35, 260.40) with score 0.978 |
|
- left_wrist: (488.70, 367.36) with score 0.986 |
|
- right_wrist: (395.69, 272.20) with score 0.973 |
|
- left_hip: (435.84, 345.96) with score 0.999 |
|
- right_hip: (380.21, 355.38) with score 0.999 |
|
- left_knee: (454.88, 456.63) with score 0.994 |
|
- right_knee: (395.82, 478.67) with score 0.992 |
|
- left_ankle: (453.75, 556.37) with score 0.889 |
|
- right_ankle: (402.35, 582.09) with score 0.872 |
|
``` |
|
</details> |