https://huggingface.co/BAAI/bge-small-en-v1.5 with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

You can then use the model to compute embeddings, as follows:

import { pipeline } from '@xenova/transformers';

// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5');

// Compute sentence embeddings
const texts = ['Hello world.', 'Example sentence.'];
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
console.log(embeddings);
// Tensor {
//   dims: [ 2, 384 ],
//   type: 'float32',
//   data: Float32Array(768) [ -0.04314826801419258, -0.029488801956176758, ... ],
//   size: 768
// }

console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list
// [
//   [ -0.04314826801419258, -0.029488801956176758, 0.027080481871962547, ... ],
//   [ -0.03605496883392334, 0.01643390767276287, 0.008982205763459206, ... ]
// ]

You can also use the model for retrieval. For example:

import { pipeline, cos_sim } from '@xenova/transformers';

// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/bge-small-en-v1.5');

// List of documents you want to embed
const texts = [
    'Hello world.',
    'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.',
    'I love pandas so much!',
];

// Compute sentence embeddings
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });

// Prepend recommended query instruction for retrieval.
const query_prefix = 'Represent this sentence for searching relevant passages: '
const query = query_prefix + 'What is a panda?';
const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true });

// Sort by cosine similarity score
const scores = embeddings.tolist().map(
    (embedding, i) => ({
        id: i,
        score: cos_sim(query_embeddings.data, embedding),
        text: texts[i],
    })
).sort((a, b) => b.score - a.score);
console.log(scores);
// [
//   { id: 1, score: 0.7995888037433755, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' },
//   { id: 2, score: 0.6911046766159414, text: 'I love pandas so much!' },
//   { id: 0, score: 0.39066192695524765, text: 'Hello world.' }
// ]

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
15,206
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support feature-extraction models for transformers.js library.

Model tree for Xenova/bge-small-en-v1.5

Quantized
(5)
this model