File size: 2,343 Bytes
0ce99a1
f6444ca
 
 
 
 
4736b9f
 
f6444ca
 
 
2d3551a
 
 
0ce99a1
 
f6444ca
 
0ce99a1
f6444ca
0ce99a1
f6444ca
4736b9f
2d3551a
 
0ce99a1
f6444ca
0ce99a1
2115a84
0ce99a1
 
f6444ca
0ce99a1
2115a84
0ce99a1
f6444ca
0ce99a1
f6444ca
0ce99a1
f6444ca
 
 
 
 
 
 
 
0ce99a1
4736b9f
 
 
 
1a1d3ed
 
 
 
 
 
 
 
 
 
4736b9f
 
f6444ca
0ce99a1
f6444ca
a16d960
f6444ca
a16d960
f6444ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
  results: []
datasets:
- stanfordnlp/imdb
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.898124
- Accuracy: {'accuracy': 0.893}

## Model description

Using LoRA to fine-tune distilbert/distilbert-base-uncased to classify movie reviews


## Training and evaluation data

https://huggingface.co/datasets/stanfordnlp/imdb

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy            |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log        | 1.0   | 250  | 0.7278          | {'accuracy': 0.833} |
| 0.358         | 2.0   | 500  | 0.6268          | {'accuracy': 0.852} |
| 0.358         | 3.0   | 750  | 0.6568          | {'accuracy': 0.872} |
| 0.1873        | 4.0   | 1000 | 0.7663          | {'accuracy': 0.883} |
| 0.1873        | 5.0   | 1250 | 0.7704          | {'accuracy': 0.877} |
| 0.0437        | 6.0   | 1500 | 0.8981          | {'accuracy': 0.893} |
| 0.0437        | 7.0   | 1750 | 0.9872          | {'accuracy': 0.886} |
| 0.0148        | 8.0   | 2000 | 1.0022          | {'accuracy': 0.888} |
| 0.0148        | 9.0   | 2250 | 1.0471          | {'accuracy': 0.892} |
| 0.0006        | 10.0  | 2500 | 1.0335          | {'accuracy': 0.889} |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0