distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.898124
  • Accuracy: {'accuracy': 0.893}

Model description

Using LoRA to fine-tune distilbert/distilbert-base-uncased to classify movie reviews

Training and evaluation data

https://huggingface.co/datasets/stanfordnlp/imdb

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.7278 {'accuracy': 0.833}
0.358 2.0 500 0.6268 {'accuracy': 0.852}
0.358 3.0 750 0.6568 {'accuracy': 0.872}
0.1873 4.0 1000 0.7663 {'accuracy': 0.883}
0.1873 5.0 1250 0.7704 {'accuracy': 0.877}
0.0437 6.0 1500 0.8981 {'accuracy': 0.893}
0.0437 7.0 1750 0.9872 {'accuracy': 0.886}
0.0148 8.0 2000 1.0022 {'accuracy': 0.888}
0.0148 9.0 2250 1.0471 {'accuracy': 0.892}
0.0006 10.0 2500 1.0335 {'accuracy': 0.889}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for WillLoki/distilbert-base-uncased-lora-text-classification

Adapter
(260)
this model

Dataset used to train WillLoki/distilbert-base-uncased-lora-text-classification