|
--- |
|
license: mit |
|
base_model: google/vivit-b-16x2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vivit-b-16x2-finetuned-cctv-surveillance |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vivit-b-16x2-finetuned-cctv-surveillance |
|
|
|
This model is a fine-tuned version of [google/vivit-b-16x2](https://huggingface.co/google/vivit-b-16x2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1478 |
|
- Accuracy: 0.9460 |
|
- F1: 0.9430 |
|
- Recall: 0.9460 |
|
- Precision: 0.9454 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 4176 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.9564 | 0.12 | 522 | 0.4417 | 0.8685 | 0.8096 | 0.8685 | 0.7990 | |
|
| 0.4574 | 1.12 | 1044 | 0.2633 | 0.9131 | 0.9042 | 0.9131 | 0.9269 | |
|
| 0.421 | 2.12 | 1566 | 0.1875 | 0.9272 | 0.9100 | 0.9272 | 0.9353 | |
|
| 0.4785 | 3.12 | 2088 | 0.1854 | 0.9249 | 0.9082 | 0.9249 | 0.9140 | |
|
| 0.3213 | 4.12 | 2610 | 0.1805 | 0.9272 | 0.9125 | 0.9272 | 0.9216 | |
|
| 0.1465 | 5.12 | 3132 | 0.1733 | 0.9413 | 0.9362 | 0.9413 | 0.9398 | |
|
| 0.0784 | 6.12 | 3654 | 0.1616 | 0.9437 | 0.9391 | 0.9437 | 0.9434 | |
|
| 0.2017 | 7.12 | 4176 | 0.1478 | 0.9460 | 0.9430 | 0.9460 | 0.9454 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|