|
--- |
|
license: cc-by-nc-nd-4.0 |
|
pipeline_tag: object-detection |
|
tags: |
|
- yolov8 |
|
- ultralytics |
|
- yolo |
|
- object-detection |
|
- pytorch |
|
- cs2 |
|
- Counter Strike |
|
--- |
|
|
|
Counter Strike 2 players detector |
|
|
|
## Supported Labels |
|
|
|
``` |
|
[ 'c', 'ch', 't', 'th' ] |
|
``` |
|
|
|
## All models |
|
|
|
- [yoloV8n_cs2](https://huggingface.co/Vombit/yolov8n_cs2) (6mb) |
|
- [yoloV8s_cs2](https://huggingface.co/Vombit/yolov8s_cs2) (21mb) |
|
- [yoloV9c_cs2](https://huggingface.co/Vombit/yolov9c_cs2) (50mb) |
|
|
|
## How to use |
|
```python |
|
# load Yolo |
|
from ultralytics import YOLO |
|
|
|
# Load a pretrained YOLO model |
|
model = YOLO(r'weights\yolov**_cs2.pt') |
|
|
|
# Run inference on 'image.png' with arguments |
|
model.predict( |
|
'image.png', |
|
save=True, |
|
device=0 |
|
) |
|
``` |
|
|
|
|
|
## Predict info |
|
|
|
Ultralytics YOLOv8.2.3 ๐ Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 4060, 8187MiB): |
|
|
|
- yolov8n_cs2_fp16.engine (640x640 5 ts, 5 ths, 2.0ms) |
|
- yolov8n_cs2.engine (640x640 5 ts, 5 ths, 3.1ms) |
|
- yolov8n_cs2.onnx (640x640 5 ts, 5 ths, 17.0ms) |
|
- yolov8n_cs2.pt (384x640 5 ts, 5 ths, 210.7ms) |
|
|
|
|
|
## Dataset info |
|
|
|
Data from over 70 games, where the footage has been tagged in detail. |
|
<img width="640" src="https://huggingface.co/Vombit/yolov8n_cs2/resolve/main/labels.jpg"> |
|
|
|
|
|
## Train info |
|
|
|
The training took place over 100 epochs. |
|
<img width="640" src="https://huggingface.co/Vombit/yolov8n_cs2/resolve/main/results.png"> |
|
|
|
|
|
|
|
You can also support me with a cup of coffee: [donate](http://185.105.118.103/donation) |