Fine-Tuned SQLCoder-7B for Odoo 17
This is a fine-tuned version of defog/sqlcoder-7b-2 trained on Odoo 17 database schemas and queries.
Model Details
- Base model: defog/sqlcoder-7b-2
- Fine-tuned using LoRA for parameter-efficient adaptation
- Optimized for Odoo 17 SQL queries
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model with PEFT adapter
model = AutoModelForCausalLM.from_pretrained("VPCSinfo/odoo17-sqlcoder-7b")
tokenizer = AutoTokenizer.from_pretrained("VPCSinfo/odoo17-sqlcoder-7b")
# Example query
schema = """
CREATE TABLE res_partner (
id INTEGER PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255),
phone VARCHAR(64)
);
CREATE TABLE sale_order (
id INTEGER PRIMARY KEY,
partner_id INTEGER REFERENCES res_partner(id),
date_order TIMESTAMP,
state VARCHAR(20),
amount_total NUMERIC
);
"""
question = "Find all customers who have orders with a total amount greater than 1000"
# Format your input following SQLCoder's expected format
prompt = f'''### Task
Generate a SQL query to answer the question below based on the table schema.
### Database Schema
CREATE TABLE res_partner (
id INTEGER PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255),
phone VARCHAR(64)
);
CREATE TABLE sale_order (
id INTEGER PRIMARY KEY,
partner_id INTEGER REFERENCES res_partner(id),
date_order TIMESTAMP,
state VARCHAR(20),
amount_total NUMERIC
);
### Question
Find all customers who have orders with a total amount greater than 1000
### SQL Query
'''
# Generate SQL
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=300)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True).split("### SQL Query")[1].strip()
print(sql_query)
- Downloads last month
- 81
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The HF Inference API does not support text-generation models for adapter-transformers
library.
Model tree for VPCSinfo/odoo17-sqlcoder-7b
Base model
defog/sqlcoder-7b-2