SPG / README.md
nielsr's picture
nielsr HF Staff
Add metadata: license, pipeline tag, library name, and link to paper and Github repo
906b10a verified
|
raw
history blame
21.6 kB
---
license: mit
library_name: transformers
pipeline_tag: image-classification
---
# SPG: Sequential Policy Gradient for Adaptive Hyperparameter Optimization
This repository contains the models described in the paper [Sequential Policy Gradient for Adaptive Hyperparameter Optimization](https://huggingface.co/papers/2506.15051).
[Project page](https://huggingface.co/UniversalAlgorithmic/SPG)
[Github repository](https://github.com/SafeAILab/EAGLE)
> πŸš€ If you're using Jupyter or Colab, you can follow the demo and run it on a single GPU:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/#fileId=https%3A//huggingface.co/UniversalAlgorithmic/SPG/blob/main/demo_nas.ipynb)
## Model Zoo: Adaptive Hyperparameter Optimization (HPO) via SPG Algorithm
`Table 1: Performance of pre-trained vs. SPG-retrained models on ImageNet-1K`
| Model | SPG | # Params | Acc@1 (%) | Acc@5 (%) | Weights | Command to reproduce |
|-------|------|----------|-----------|-----------|---------|----------------------|
| MobileNet-V2 | ❌ | 3.5 M | 71.878 | 90.286 | <a href='https://download.pytorch.org/models/mobilenet_v2-b0353104.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2'>Recipe</a> |
| MobileNet-V2 | βœ… | 3.5 M | 72.104 | 90.316 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/image-classification/mobilenetv2/model_32.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/mobilenet_v2-yellow'></a> | [examples/image-classification/run.sh](#retrain-model-on-imagenet-1k) |
| ResNet-50 | ❌ | 25.6 M | 76.130 | 92.862 | <a href='https://download.pytorch.org/models/resnet50-0676ba61.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#resnet'>Recipe</a> |
| ResNet-50 | βœ… | 25.6 M | 77.234 | 93.322 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/image-classification/resnet50/model_35.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet50-yellow'></a> | [examples/image-classification/run.sh](#retrain-model-on-imagenet-1k) |
| EfficientNet-V2-M | ❌ | 54.1 M | 85.112 | 97.156 | <a href='https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v2'>Recipe</a> |
| EfficientNet-V2-M | βœ… | 54.1 M | 85.218 | 97.208 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/image-classification/efficientnet_v2_m/model_7.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/efficientnet_v2_m-yellow'></a> | [examples/image-classification/run.sh](#retrain-model-on-imagenet-1k) |
| ViT-B16 | ❌ | 86.6 M | 81.072 | 95.318 | <a href='https://download.pytorch.org/models/vit_b_16-c867db91.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16'>Recipe</a> |
| ViT-B16 | βœ… | 86.6 M | 81.092 | 95.304 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/image-classification/vit_b_16/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/vit_b_16-yellow'></a> | [examples/image-classification/run.sh](#retrain-model-on-imagenet-1k) |
`Table 2: Performance of pre-trained vs. SPG-retrained models. All models are evaluated a subset of COCO val2017, on the 21/20 categories that are present in the Pascal VOC dataset.`
> ⚠️ `All model reported on TorchVision (with weight COCO_WITH_VOC_LABELS_V1) were benchmarked using only 20 categories. Researchers should first download the pre-trained model from TorchVision and conduct re-evaluation under the 21-categories (including "background") framework.`
| Model | SPG | # Params | mIoU (%) | pixelwise Acc (%) | Weights | Command to reproduce |
|---------------------|-----|----------|------------|---------------------|---------|----------------------|
| FCN-ResNet50 | ❌ | 35.3 M | 58.9/60.5 | 90.9/91.4 | <a href='https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50'>Recipe</a> |
| FCN-ResNet50 | βœ… | 35.3 M | 59.4/60.9 | 90.9/91.6 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/semantic-segmentation/fcn_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet50-yellow'></a> | [examples/semantic-segmentation/run.sh](#retrain-model-on-ms-coco-2017) |
| FCN-ResNet101 | ❌ | 54.3 M | 62.2/63.7 | 91.1/91.9 | <a href='https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101'>Recipe</a> |
| FCN-ResNet101 | βœ… | 54.3 M | 62.4/64.3 | 91.1/91.9 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/semantic-segmentation/fcn_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet101-yellow'></a> | [examples/semantic-segmentation/run.sh](#retrain-model-on-ms-coco-2017) |
| DeepLabV3-ResNet50 | ❌ | 42.0 M | 63.8/66.4 | 91.5/92.4 | <a href='https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50'>Recipe</a> |
| DeepLabV3-ResNet50 | βœ… | 42.0 M | 64.2/66.6 | 91.6/92.5 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/semantic-segmentation/deeplabv3_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet50-yellow'></a> | [examples/semantic-segmentation/run.sh](#retrain-model-on-ms-coco-2017) |
| DeepLabV3-ResNet101 | ❌ | 61.0 M | 65.3/67.4 | 91.7/92.4 | <a href='https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101'>Recipe</a> |
| DeepLabV3-ResNet101 | βœ… | 61.0 M | 65.7/67.8 | 91.8/92.5 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/semantic-segmentation/deeplabv3_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet101-yellow'></a> | [examples/semantic-segmentation/run.sh](#retrain-model-on-ms-coco-2017) |
`Table 3: Performance comparison of fine-tuned vs. SPG-retrained models across NLP and speech benchmarks.`
- GLUE (Text classification: BERT on CoLA, SST-2, MRPC, QQP, QNLI, and RTE task)
- SQuAD (Question answering: BERT)
- SUPERB (Speech classification: Wav2Vec2 for Audio Classification (AC))
| Task | SPG | Metric Type | Performance (%) | Weights | Command to reproduce |
|-------|------|-------------------|-----------------|---------|----------------------|
| CoLA | ❌ | Matthews coor | 56.53 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| CoLA | βœ… | Matthews coor | 62.13 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/cola'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/CoLA-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| SST-2 | ❌ | Accuracy | 92.32 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| SST-2 | βœ… | Accuracy | 92.54 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/sst2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/SST2-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| MRPC | ❌ | F1/Accuracy | 88.85/84.09 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| MRPC | βœ… | F1/Accuracy | 91.10/87.25 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/mrpc'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/MRPC-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| QQP | ❌ | F1/Accuracy | 87.49/90.71 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| QQP | βœ… | F1/Accuracy | 89.72/90.88 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/qqp'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QQP-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| QNLI | ❌ | Accuracy | 90.66 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| QNLI | βœ… | Accuracy | 91.10 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/qnli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QNLI-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| RTE | ❌ | Accuracy | 65.70 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
| RTE | βœ… | Accuracy | 72.56 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/text-classification/rte'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/RTE-yellow'></a> | [examples/text-classification/run.sh](#transfer-learning-on-glue) |
| Q/A* | ❌ | F1/Extra match | 88.52/81.22 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-question_answering-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering#fine-tuning-bert-on-squad10'>Recipe</a> |
| Q/A* | βœ… | F1/Extra match | 88.67/81.51 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/question-answering/qa'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QA-yellow'></a> | [examples/question-answering/run.sh](#transfer-learning-on-squad) |
| AC† | ❌ | Accuracy | 98.26 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-audio_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification#single-gpu'>Recipe</a> |
| AC† | βœ… | Accuracy | 98.31 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/examples/audio-classification/ac'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/AC-yellow'></a> | [examples/audio-answering/run.sh](#transfer-learning-on-superb) |
## Model Zoo: Neural Architecture Search (NAS) via SPG Algorithm
`Table 4: Performance of pre-trained vs. SPG-retrained models on ImageNet-1K`
Depending on the base model, we explore the following architectures:
- ResNet-18: ResNet-18, ResNet-27, ResNet-36, ResNet-45
- ResNet-34: ResNet-34, ResNet-40, ResNet-46, ResNet-52
- ResNet-50: ResNet-50, ResNet-53, ResNet-56, ResNet-59
> ⚠️`Our SPG differs from most NAS algorithms, which typically use a gating network for architecture selection. In contrast, we neither employ a gating network nor a proxy network. Instead, after policy optimization, we keep only the base architecture (ResNet-18, ResNet-34, and ResNet-50) and remove all others (ResNet-27/36/45, ResNet-40/46/52, and ResNet-53/56/59).`
| Model | SPG | # Params | Acc@1 (%) | Acc@5 (%) | Weights | Command to reproduce |
|-------|------|----------|-----------|-----------|---------|----------------------|
| ResNet-18 | ❌ | 11.7M | 69.758 | 89.078 | <a href='https://download.pytorch.org/models/resnet18-f37072fd.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#resnet'>Recipe</a> |
| ResNet-18 | βœ… | 11.7M | 70.092 | 89.314 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/neural-archicture-search/resnet18/model_3.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet18-yellow'></a> | [examples/neural-architecture-search/run.sh](#neural-architecture-search-for-resnet-on-imagenet-1k) |
| ResNet-34 | ❌ | 21.8M | 73.314 | 91.420 | <a href='https://download.pytorch.org/models/resnet34-b627a593.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#resnet'>Recipe</a> |
| ResNet-34 | βœ… | 21.8M | 73.900 | 93.536 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/neural-archicture-search/resnet34/model_8.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet34-yellow'></a> | [examples/neural-architecture-search/run.sh](#neural-architecture-search-for-resnet-on-imagenet-1k) |
| ResNet-50 | ❌ | 25.6 M | 76.130 | 92.862 | <a href='https://download.pytorch.org/models/resnet50-0676ba61.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#resnet'>Recipe</a> |
| ResNet-50 | βœ… | 25.6 M | 77.234 | 93.322 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/examples/neural-archicture-search/resnet50/model_9.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet50-yellow'></a> | [examples/neural-architecture-search/run.sh](#neural-architecture-search-for-resnet-on-imagenet-1k) |
## Requirements
1. Install `torch>=2.0.0+cu118`.
2. To install other pip packages:
```setup
cd examples
pip install -r requirements.txt
```
3. Prepare the [ImageNet](http://image-net.org/) dataset manually and place it in `/path/to/imagenet`. For image classification examples, pass the argument `--data-path=/path/to/imagenet` to the training script. The extracted dataset directory should follow this structure:
```setup
/path/to/imagenet/:
train/:
n01440764:
n01440764_18.JPEG ...
n01443537:
n01443537_2.JPEG ...
val/:
n01440764:
ILSVRC2012_val_00000293.JPEG ...
n01443537:
ILSVRC2012_val_00000236.JPEG ...
```
4. Prepare the [MS-COCO 2017](https://cocodataset.org/#home) dataset manually and place it in `/path/to/coco`. For image classification examples, pass the argument `--data-path=/path/to/coco` to the training script. The extracted dataset directory should follow this structure:
```setup
/path/to/coco/:
annotations:
many_json_files.json ...
train2017:
000000000009.jpg ...
val2017:
000000000139.jpg ...
```
5. For [πŸ—£οΈ Keyword Spotting subset](https://huggingface.co/datasets/s3prl/superb#ks), [Common Language](https://huggingface.co/datasets/speechbrain/common_language), [SQuAD](https://huggingface.co/datasets/rajpurkar/squad), [Common Voice](https://huggingface.co/datasets/legacy-datasets/common_voice), [GLUE](https://gluebenchmark.com/) and [WMT](https://huggingface.co/datasets/wmt/wmt17) datasets, manual downloading is not required β€” they will be automatically loaded via the Hugging Face Datasets library when running our `audio-classification`, `question-answering`, `speech-recognition`, `text-classification`, or `translation` examples.
## Training
### Retrain model on ImageNet-1K
We use training recipes similar to those in [PyTorch Vision's classification reference](https://github.com/pytorch/vision/blob/main/references/classification/README.md) to retrain MobileNet-V2, ResNet, EfficientNet-V2, and ViT with our SPG on ImageNet-1K. The following command can be used:
```bash
cd ./examples/image-classification
# MobileNet-V2
torchrun --nproc_per_node=4 train.py\
--data-path /path/to/imagenet/\
--model mobilenet_v2 --output-dir mobilenet_v2 --weights MobileNet_V2_Weights.IMAGENET1K_V1\
--batch-size 192 --epochs 40 --lr 0.0004 --lr-step-size 10 --lr-gamma 0.5 --wd 0.00004 --apply-trp --trp-depths 1 --trp-p 0.15 --trp-lambdas 0.4 0.2 0.1
# ResNet-50
torchrun --nproc_per_node=4 train.py\
--data-path /path/to/imagenet/\
--model resnet50 --output-dir resnet50 --weights ResNet50_Weights.IMAGENET1K_V1\
--batch-size 64 --epochs 40 --lr 0.0004 --lr-step-size 10 --lr-gamma 0.5 --print-freq 100\
--apply-trp --trp-depths 1 --trp-p 0.2 --trp-lambdas 0.4 0.2 0.1
# EfficientNet-V2 M
torchrun --nproc_per_node=4 train.py \
--data-path /path/to/imagenet/\
--model efficientnet_v2_m --output-dir efficientnet_v2_m --weights EfficientNet_V2_M_Weights.IMAGENET1K_V1\
--epochs 10 --batch-size 64 --lr 5e-9 --lr-scheduler cosineannealinglr --weight-decay 0.00002 \
--lr-warmup-method constant --lr-warmup-epochs 8 --lr-warmup-decay 0. \
--auto-augment ta_wide --random-erase 0.1 --label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --norm-weight-decay 0.0 \
--train-crop-size 384 --val-crop-size 480 --val-resize-size 480 --ra-sampler --ra-reps 4 --print-freq 100\
--apply-trp --trp-depths 1 --trp-p 0.2 --trp-lambdas 0.4 0.2 0.1
# ViT-B-16
torchrun --nproc_per_node=4 train.py\
--data-path /path/to/imagenet/\
--model vit_b_16 --output-dir vit_b_16 --weights ViT_B_16_Weights.IMAGENET1K_V1\
--epochs 5 --batch-size 196 --opt adamw --lr 5e-9 --lr-scheduler cosineannealinglr --wd 0.3\
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
--amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra --clip-grad-norm 1 --cutmix-alpha 1.0\
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
```
### Retrain model on MS-COCO 2017
We use training recipes similar to those in [PyTorch Vision's segmentation reference](https://github.com/pytorch/vision/blob/main/references/segmentation/README.md) to retrain FCN and DeepLab-V3 with our SPG on COCO dataset. The following command can be used:
```bash
cd ./examples/semantic-segmentation
# FCN-ResNet50
torchrun --nproc_per_node=4 train.py\
--workers 4 --dataset coco --data-path /path/to/coco/\
--model fcn_resnet50 --aux-loss --output-dir fcn_resnet50 --weights FCN_ResNet50