|
--- |
|
base_model: UW-Madison-Lee-Lab/Llama-PRM800K |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: VersaPRM-Aug |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# VersaPRM-Aug |
|
|
|
This model is a fine-tuned version of [UW-Madison-Lee-Lab/Llama-PRM800K](https://huggingface.co/UW-Madison-Lee-Lab/Llama-PRM800K) on [UW-Madison-Lee-Lab/MMLU-Pro-CoT-Train-Labeled](https://huggingface.co/datasets/UW-Madison-Lee-Lab/MMLU-Pro-CoT-Train-Labeled) with counterfactual augmentations. |
|
|
|
## Get rewards |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def get_tokenizer(model_id): |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = 'left' |
|
tokenizer.truncation_side = 'left' |
|
return tokenizer |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
tokenizer = get_tokenizer('UW-Madison-Lee-Lab/VersaPRM-Aug') |
|
model = AutoModelForCausalLM.from_pretrained('UW-Madison-Lee-Lab/VersaPRM-Aug') |
|
candidate_tokens = [12, 10] |
|
model.to(device) |
|
|
|
question = 'Question: In Python 3, which of the following function convert a string to an int in python?\nA. short(x)\nB. float(x)\nC. integer(x [,base])\nD. double(x)\nE. int(x [,base])\nF. long(x [,base] )\nG. num(x)\nH. str(x)\nI. char(x)\nJ. digit(x [,base])' |
|
solution = ["To convert a string to an integer in Python 3, we use the built-in function int().", |
|
"The int() function takes two arguments: the string to be converted and an optional base (default is 10, which is for decimal).", |
|
"For example: int(\"123\", 10) converts the string \"123\" to the integer 123.", |
|
"Looking at the options, we can see that the correct function is option E: int(x [,base]).", |
|
"The answer is (E)."] |
|
input_text = question + ' \n\n' + ' \n\n\n\n'.join(solution) + ' \n\n\n\n' # solution steps are separated by ' \n\n\n\n' |
|
input_id = torch.tensor([tokenizer.encode(input_text)]).to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_id).logits[:,:,candidate_tokens] |
|
scores = logits.softmax(dim=-1)[:,:,1] |
|
step_scores = scores[input_id == 23535] |
|
step_probs = step_scores.tolist() |
|
``` |