Chronos-Prism_V1.0 / README.md
Triangle104's picture
Adding Evaluation Results (#1)
3240f35 verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- elinas/Chronos-Gold-12B-1.0
- ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2
- nbeerbower/Mistral-Nemo-Prism-12B
model-index:
- name: Chronos-Prism_V1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 32.59
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 36.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.63
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.94
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.28
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.7
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Chronos-Prism_V1.0
name: Open LLM Leaderboard
---
Model details:
-
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/66c1cc08453a7ef6c5fe657a/obRjltZGWzWfiU-u-MMRL.webp)
This is definately not perfect, but it does feel pretty close.
Feedback is welcome, as always.
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [nbeerbower/Mistral-Nemo-Prism-12B](https://huggingface.co/nbeerbower/Mistral-Nemo-Prism-12B) as a base.
### Models Merged
The following models were included in the merge:
* [elinas/Chronos-Gold-12B-1.0](https://huggingface.co/elinas/Chronos-Gold-12B-1.0)
* [ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2](https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: nbeerbower/Mistral-Nemo-Prism-12B
#no parameters necessary for base model
- model: ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2
parameters:
density: 0.5
weight: 0.5
- model: elinas/Chronos-Gold-12B-1.0
parameters:
density: 0.5
weight: 0.5
merge_method: ties
base_model: nbeerbower/Mistral-Nemo-Prism-12B
parameters:
normalize: false
int8_mask: true
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Triangle104__Chronos-Prism_V1.0-details)
| Metric |Value|
|-------------------|----:|
|Avg. |22.12|
|IFEval (0-Shot) |32.59|
|BBH (3-Shot) |36.58|
|MATH Lvl 5 (4-Shot)|11.63|
|GPQA (0-shot) | 7.94|
|MuSR (0-shot) |14.28|
|MMLU-PRO (5-shot) |29.70|