|
from torch import nn |
|
import torch |
|
from transformers import BertModel, PreTrainedModel |
|
|
|
from typing import Tuple |
|
|
|
|
|
class HierarchicalBertModel(PreTrainedModel): |
|
|
|
def __init__(self, config, num_main_segment=None, num_sub_segment=None): |
|
super(HierarchicalBertModel, self).__init__(config=config) |
|
self.num_main_segment = num_main_segment if num_main_segment else config.num_main_segment |
|
self.num_sub_segment = num_sub_segment if num_sub_segment else config.num_sub_segment |
|
self.bert = BertModel.from_pretrained("bert-base-multilingual-uncased") |
|
self.dropout = nn.Dropout(0.1) |
|
self.hidden_2 = nn.Linear(768, 768) |
|
self.fc_main = nn.Linear(768, self.num_main_segment) |
|
self.fc_sub = nn.Linear(768, self.num_sub_segment) |
|
|
|
def forward(self, input_ids: torch.tensor, attention_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
outputs = self.bert(input_ids=input_ids, |
|
attention_mask=attention_masks) |
|
last_hidden_state_cls = outputs[0][:, 0, :] |
|
out = self.hidden_2(last_hidden_state_cls) |
|
return self.fc_main(last_hidden_state_cls), self.fc_sub(last_hidden_state_cls) |