test-classification-model / hierarchical_bert_architecture.py
TimB-92's picture
Upload model
bcd0a88
from torch import nn
import torch
from transformers import BertModel, PreTrainedModel
from typing import Tuple
class HierarchicalBertModel(PreTrainedModel):
def __init__(self, config, num_main_segment=None, num_sub_segment=None):
super(HierarchicalBertModel, self).__init__(config=config)
self.num_main_segment = num_main_segment if num_main_segment else config.num_main_segment
self.num_sub_segment = num_sub_segment if num_sub_segment else config.num_sub_segment
self.bert = BertModel.from_pretrained("bert-base-multilingual-uncased")
self.dropout = nn.Dropout(0.1)
self.hidden_2 = nn.Linear(768, 768)
self.fc_main = nn.Linear(768, self.num_main_segment)
self.fc_sub = nn.Linear(768, self.num_sub_segment)
def forward(self, input_ids: torch.tensor, attention_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_masks)
last_hidden_state_cls = outputs[0][:, 0, :]
out = self.hidden_2(last_hidden_state_cls)
return self.fc_main(last_hidden_state_cls), self.fc_sub(last_hidden_state_cls)