from torch import nn import torch from transformers import BertModel, PreTrainedModel from typing import Tuple class HierarchicalBertModel(PreTrainedModel): def __init__(self, config, num_main_segment=None, num_sub_segment=None): super(HierarchicalBertModel, self).__init__(config=config) self.num_main_segment = num_main_segment if num_main_segment else config.num_main_segment self.num_sub_segment = num_sub_segment if num_sub_segment else config.num_sub_segment self.bert = BertModel.from_pretrained("bert-base-multilingual-uncased") self.dropout = nn.Dropout(0.1) self.hidden_2 = nn.Linear(768, 768) self.fc_main = nn.Linear(768, self.num_main_segment) self.fc_sub = nn.Linear(768, self.num_sub_segment) def forward(self, input_ids: torch.tensor, attention_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: outputs = self.bert(input_ids=input_ids, attention_mask=attention_masks) last_hidden_state_cls = outputs[0][:, 0, :] out = self.hidden_2(last_hidden_state_cls) return self.fc_main(last_hidden_state_cls), self.fc_sub(last_hidden_state_cls)