|
--- |
|
license: other |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- alpaca |
|
- llama |
|
- chat |
|
- gpt4 |
|
inference: false |
|
--- |
|
# GPT4 Alpaca LoRA 30B - GPTQ 4bit 128g |
|
|
|
This is a 4-bit GPTQ version of the [Chansung GPT4 Alpaca 30B LoRA model](https://huggingface.co/chansung/gpt4-alpaca-lora-30b). |
|
|
|
It was created by merging the LoRA provided in the above repo with the original Llama 30B model, producing unquantised model [GPT4-Alpaca-LoRA-30B-HF]](https://huggingface.co/TheBloke/gpt4-alpaca-lora-30b-HF) |
|
|
|
It was then quantized to 4bit, groupsize 128g, using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). |
|
|
|
VRAM usage will depend on the tokens returned. Below approximately 1000 tokens returned it will use <24GB VRAM, but at 1000+ tokens it will exceed the VRAM of a 24GB card. |
|
|
|
RAM and VRAM usage at the end of a 670 token response in `text-generation-webui` : **5.2GB RAM, 20.7GB VRAM** |
|
 |
|
RAM and VRAM usage after about 1500 tokens: **5.2GB RAM, 30.0GB VRAM** |
|
 |
|
|
|
If you want a model that should always stay under 24GB, use this one, provided by MetalX, instead: |
|
[GPT4 Alpaca Lora 30B GPTQ 4bit without groupsize](https://huggingface.co/MetaIX/GPT4-X-Alpaca-30B-Int4) |
|
|
|
## Provided files |
|
|
|
Currently one model file is provided, a `safetensors`. This file requires the latest GPTQ-for-LLaMa code to run inside [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
Tomorrow I will try to add another file that does not use `--act-order` and therefore can be run in text-generation-webui without needing to update GPTQ-for-LLaMa (at the cost of possibly having slightly lower inference quality.) |
|
|
|
Details of the files provided: |
|
* `gpt4-alpaca-lora-30B-GPTQ-4bit-128g.safetensors` |
|
* `safetensors` format, with improved file security, created with the latest [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) code. |
|
* Command to create: |
|
* `python3 llama.py gpt4-alpaca-lora-30B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors gpt4-alpaca-lora-30B-GPTQ-4bit-128g.safetensors` |
|
|
|
## How to run in `text-generation-webui` |
|
|
|
The `safetensors` model file was created with the latest GPTQ code, and uses `--act-order` to give the maximum possible quantisation quality. This means it requires that the latest GPTQ-for-LLaMa is used inside the UI. |
|
|
|
Here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI: |
|
``` |
|
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
mkdir -p text-generation-webui/repositories |
|
ln -s GPTQ-for-LLaMa text-generation-webui/repositories/GPTQ-for-LLaMa |
|
``` |
|
|
|
Then install this model into `text-generation-webui/models` and launch the UI as follows: |
|
``` |
|
cd text-generation-webui |
|
python server.py --model gpt4-alpaca-lora-30B-GPTQ-4bit-128g --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want |
|
``` |
|
|
|
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information. |
|
|
|
If you are on Windows, or cannot use the Triton branch of GPTQ for any other reason, you can instead use the CUDA branch: |
|
``` |
|
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa -b cuda |
|
cd GPTQ-for-LLaMa |
|
python setup_cuda.py install --force |
|
``` |
|
Then link that into `text-generation-webui/repositories` as described above. |
|
|
|
# Original GPT4 Alpaca Lora model card |
|
|
|
This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system. |
|
- Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation |
|
- Training script: |
|
```shell |
|
python finetune.py \ |
|
--base_model='decapoda-research/llama-30b-hf' \ |
|
--data_path='alpaca_data_gpt4.json' \ |
|
--num_epochs=10 \ |
|
--cutoff_len=512 \ |
|
--group_by_length \ |
|
--output_dir='./gpt4-alpaca-lora-30b' \ |
|
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ |
|
--lora_r=16 \ |
|
--batch_size=... \ |
|
--micro_batch_size=... |
|
``` |
|
|
|
You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18). |
|
|