|
--- |
|
license: other |
|
license_name: tencent-hunyuan-community |
|
license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt |
|
language: |
|
- en |
|
--- |
|
## Using HunyuanDiT ControlNet |
|
|
|
|
|
### Instructions |
|
|
|
|
|
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2). |
|
|
|
We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet. |
|
|
|
Download the model using the following commands: |
|
|
|
```bash |
|
cd HunyuanDiT |
|
# Use the huggingface-cli tool to download the model. |
|
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them. |
|
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckpts/t2i/controlnet |
|
huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model |
|
|
|
# Quick start |
|
python sample_controlnet.py --infer-mode fa --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 |
|
``` |
|
|
|
Examples of condition input and ControlNet results are as follows: |
|
<table> |
|
<tr> |
|
<td colspan="3" align="center">Condition Input</td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center">Canny ControlNet </td> |
|
<td align="center">Depth ControlNet </td> |
|
<td align="center">Pose ControlNet </td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center">在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围<br>(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.) </td> |
|
<td align="center">在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果<br>(In the dense forest, a black and white panda sits quietly among the green trees and red flowers, surrounded by mountains and oceans. The background is a daytime forest with ample light. The photo uses a close-up, eye-level, and centered composition to create a realistic effect.) </td> |
|
<td align="center">在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围<br>(In the daytime forest, an Asian woman wearing a green shirt stands beside an elephant. The photo uses a medium shot, eye-level, and centered composition to create a realistic effect. This picture embodies the character photography culture and conveys a serene atmosphere.) </td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center"><img src="asset/input/canny.jpg" alt="Image 0" width="200"/></td> |
|
<td align="center"><img src="asset/input/depth.jpg" alt="Image 1" width="200"/></td> |
|
<td align="center"><img src="asset/input/pose.jpg" alt="Image 2" width="200"/></td> |
|
|
|
</tr> |
|
|
|
<tr> |
|
<td colspan="3" align="center">ControlNet Output</td> |
|
</tr> |
|
|
|
<tr> |
|
<td align="center"><img src="asset/output/canny.jpg" alt="Image 3" width="200"/></td> |
|
<td align="center"><img src="asset/output/depth.jpg" alt="Image 4" width="200"/></td> |
|
<td align="center"><img src="asset/output/pose.jpg" alt="Image 5" width="200"/></td> |
|
</tr> |
|
|
|
|
|
</table> |
|
|
|
|
|
### Training |
|
|
|
We utilize [**DWPose**](https://github.com/IDEA-Research/DWPose) for pose extraction. Please follow their guidelines to download the checkpoints and save them to `hydit/annotator/ckpts` directory. We provide serveral commands to quick install: |
|
```bash |
|
mkdir ./hydit/annotator/ckpts |
|
wget -O ./hydit/annotator/ckpts/dwpose.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/dwpose.zip |
|
unzip ./hydit/annotator/ckpts/dwpose.zip -d ./hydit/annotator/ckpts/ |
|
``` |
|
Additionally, ensure that you install the related dependencies. |
|
```bash |
|
pip install matplotlib==3.7.5 |
|
pip install onnxruntime_gpu==1.16.3 |
|
pip install opencv-python==4.8.1.78 |
|
``` |
|
|
|
|
|
We provide three types of weights for ControlNet training, `ema`, `module` and `distill`, and you can choose according to the actual effects. By default, we use `distill` weights. |
|
|
|
Here is an example, we load the `distill` weights into the main model and conduct ControlNet training. |
|
|
|
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter. |
|
|
|
```bash |
|
task_flag="canny_controlnet" # the task flag is used to identify folders. |
|
control_type=canny |
|
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume |
|
index_file=/path/to/your/indexfile # index file for dataloader |
|
results_dir=./log_EXP # save root for results |
|
batch_size=1 # training batch size |
|
image_size=1024 # training image resolution |
|
grad_accu_steps=2 # gradient accumulation |
|
warmup_num_steps=0 # warm-up steps |
|
lr=0.0001 # learning rate |
|
ckpt_every=10000 # create a ckpt every a few steps. |
|
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps. |
|
epochs=100 # total training epochs |
|
|
|
|
|
sh $(dirname "$0")/run_g_controlnet.sh \ |
|
--task-flag ${task_flag} \ |
|
--control-type ${control_type} \ |
|
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \ |
|
--predict-type v_prediction \ |
|
--uncond-p 0.44 \ |
|
--uncond-p-t5 0.44 \ |
|
--index-file ${index_file} \ |
|
--random-flip \ |
|
--lr ${lr} \ |
|
--batch-size ${batch_size} \ |
|
--image-size ${image_size} \ |
|
--global-seed 999 \ |
|
--grad-accu-steps ${grad_accu_steps} \ |
|
--warmup-num-steps ${warmup_num_steps} \ |
|
--use-flash-attn \ |
|
--use-fp16 \ |
|
--results-dir ${results_dir} \ |
|
--resume \ |
|
--resume-module-root ${resume_module_root} \ |
|
--epochs ${epochs} \ |
|
--ckpt-every ${ckpt_every} \ |
|
--ckpt-latest-every ${ckpt_latest_every} \ |
|
--log-every 10 \ |
|
--deepspeed \ |
|
--deepspeed-optimizer \ |
|
--use-zero-stage 2 \ |
|
--gradient-checkpointing \ |
|
"$@" |
|
|
|
``` |
|
|
|
Recommended parameter settings |
|
|
|
| Parameter | Description | Recommended Parameter Value | Note| |
|
|:---------------:|:---------:|:---------------------------------------------------:|:--:| |
|
| `--batch-size` | Training batch size | 1 | Depends on GPU memory| |
|
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - | |
|
| `--lr` | Learning rate | 0.0001 | - | |
|
| `--control-type` | ControlNet condition type, support 3 types now (canny, depth and pose) | / | - | |
|
|
|
|
|
### Inference |
|
You can use the following command line for inference. |
|
|
|
a. You can use a float to specify the weight for all layers, **or use a list to separately specify the weight for each layer**, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]' |
|
```bash |
|
python sample_controlnet.py --infer-mode fa --control-weight "[1.0 * (0.825 ** float(19 - i)) for i in range(19)]" --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg |
|
``` |
|
|
|
b. Using canny ControlNet during inference |
|
|
|
```bash |
|
python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg |
|
``` |
|
|
|
c. Using depth ControlNet during inference |
|
|
|
```bash |
|
python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果" --condition-image-path controlnet/asset/input/depth.jpg |
|
``` |
|
|
|
d. Using pose ControlNet during inference |
|
|
|
|
|
```bash |
|
python3 sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围" --condition-image-path controlnet/asset/input/pose.jpg |
|
``` |
|
|
|
## HunyuanDiT Controlnet v1.1 |
|
|
|
### Instructions |
|
Download the v1.1 base model and controlnet using the following commands: |
|
```bash |
|
cd HunyuanDiT |
|
# Use the huggingface-cli tool to download the model. |
|
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them. |
|
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.1 --local-dir ./HunyuanDiT-v1.1/t2i/controlnet |
|
huggingface-cli download Tencent-Hunyuan/Distillation-v1.1 ./pytorch_model_distill.pt --local-dir ./HunyuanDiT-v1.1/t2i/model |
|
``` |
|
|
|
### Training |
|
|
|
```bash |
|
task_flag="canny_controlnet" # the task flag is used to identify folders. |
|
control_type=canny |
|
resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume |
|
index_file=/path/to/your/indexfile # index file for dataloader |
|
results_dir=./log_EXP # save root for results |
|
batch_size=1 # training batch size |
|
image_size=1024 # training image resolution |
|
grad_accu_steps=2 # gradient accumulation |
|
warmup_num_steps=0 # warm-up steps |
|
lr=0.0001 # learning rate |
|
ckpt_every=10000 # create a ckpt every a few steps. |
|
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps. |
|
epochs=100 # total training epochs |
|
|
|
|
|
sh $(dirname "$0")/run_g_controlnet.sh \ |
|
--task-flag ${task_flag} \ |
|
--control-type ${control_type} \ |
|
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \ |
|
--predict-type v_prediction \ |
|
--multireso \ |
|
--reso-step 64 \ |
|
--uncond-p 0.44 \ |
|
--uncond-p-t5 0.44 \ |
|
--index-file ${index_file} \ |
|
--random-flip \ |
|
--lr ${lr} \ |
|
--batch-size ${batch_size} \ |
|
--image-size ${image_size} \ |
|
--global-seed 999 \ |
|
--grad-accu-steps ${grad_accu_steps} \ |
|
--warmup-num-steps ${warmup_num_steps} \ |
|
--use-flash-attn \ |
|
--use-fp16 \ |
|
--results-dir ${results_dir} \ |
|
--resume \ |
|
--resume-module-root ${resume_module_root} \ |
|
--epochs ${epochs} \ |
|
--ckpt-every ${ckpt_every} \ |
|
--ckpt-latest-every ${ckpt_latest_every} \ |
|
--log-every 10 \ |
|
--deepspeed \ |
|
--deepspeed-optimizer \ |
|
--use-zero-stage 2 \ |
|
--use-style-cond \ |
|
--size-cond 1024 1024 \ |
|
"$@" |
|
``` |
|
|
|
### Inference |
|
You can use the following command line for inference. |
|
|
|
a. Using canny ControlNet during inference |
|
|
|
```bash |
|
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 |
|
``` |
|
|
|
b. Using depth ControlNet during inference |
|
|
|
```bash |
|
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition-image-path controlnet/asset/input/depth.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 |
|
``` |
|
|
|
c. Using pose ControlNet during inference |
|
|
|
```bash |
|
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 |
|
``` |
|
|
|
|