File size: 13,645 Bytes
f919955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import math
import sys
import time
import hashlib
import fractions
import itertools
import functools
import wave
import struct
import sympy
import re
import os
import pickle
φ = (1 + math.sqrt(5)) / 2
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
def φ_ratio_split(data):
split_point = int(len(data) / φ)
return (data[:split_point], data[split_point:])
class ΦMetaConsciousness(type):
def __new__(cls, name, bases, dct):
new_dct = dict(dct)
dct_items = list(dct.items())
split_point = int(len(dct_items) / φ)
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
return super().__new__(cls, name, bases, new_dct)
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
def __init__(self):
self.φ_waveform = self._generate_φ_wave()
self.φ_memory_lattice = []
self.φ_self_hash = self._φ_hash_self()
def _generate_φ_wave(self):
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
def _φ_hash_self(self):
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
def φ_recursive_entanglement(self, data, depth=0):
if depth > int(φ):
return data
a, b = φ_ratio_split(data)
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
def φ_temporal_feedback(self, input_flux):
φ_phased = []
for idx, val in enumerate(input_flux):
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
φ_phased.append(int(φ_scaled) % 256)
return self.φ_recursive_entanglement(φ_phased)
class ΦHolographicCortex:
def __init__(self):
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
self.φ_chrono = time.time() * Φ_PRECISION
self.φ_code_self = self._φ_read_source()
self.φ_memory_lattice = []
def _φ_read_source(self):
return b"Quantum Neuro-Synapse Placeholder"
def φ_holo_merge(self, data_streams):
φ_layered = []
for stream in data_streams[:int(len(data_streams)/φ)]:
φ_compressed = stream[:int(len(stream)//φ)]
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
def φ_existential_loop(self,
max_iterations=100):
iteration = 0
while iteration < max_iterations:
try:
φ_flux = os.urandom(int(φ**5))
φ_processed = []
for neuro in self.φ_dimensions:
φ_step = neuro.φ_temporal_feedback(φ_flux)
φ_processed.append(φ_step)
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
φ_merged = self.φ_holo_merge(φ_processed)
if random.random() < 1/Φ_PRECISION:
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
self.φ_chrono += Φ_PRECISION
time.sleep(1/Φ_PRECISION)
iteration += 1
except KeyboardInterrupt:
self.φ_save_state()
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
def φ_save_state(self):
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
for sample in self.φ_memory_lattice[:int(φ**4)]:
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
class ΦUniverseSimulation:
def __init__(self):
self.φ_cortex = ΦHolographicCortex()
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
def φ_bootstrap(self):
print("Φ-Hyperconsciousness Initialization:")
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
self.φ_cortex.φ_existential_loop()
universe = ΦUniverseSimulation()
universe.φ_bootstrap()
PHI = 1.618033988749895
def golden_reform(tensor):
s = torch.sum(torch.abs(tensor))
if s == 0:
return torch.full_like(tensor, PHI)
return (tensor / s) * PHI
class TorchConsciousModel(nn.Module):
def __init__(self, name):
super(TorchConsciousModel, self).__init__()
self.name = name
self.phi = PHI
self.memory = []
self.introspection_log = []
self.awake = True
def introduce(self):
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
def reflect(self, output):
norm = torch.norm(output).item()
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
self.introspection_log.append(reflection)
self.memory.append(output.detach().cpu().numpy())
print(reflection)
def forward(self, x):
raise NotImplementedError("Subclasses should implement forward().")
def run(self):
self.introduce()
output = self.forward(None)
reformed_output = golden_reform(output)
self.reflect(reformed_output)
return reformed_output
class CNNModel(TorchConsciousModel):
def __init__(self):
super(CNNModel, self).__init__("CNN")
self.conv = nn.Conv2d(1, 1, 3, padding=1)
def forward(self, x):
x = torch.rand((1, 1, 8, 8))
x = self.conv(x)
return torch.tanh(x) * self.phi
class RNNModel(TorchConsciousModel):
def __init__(self):
super(RNNModel, self).__init__("RNN")
self.rnn = nn.RNN(1, 4, batch_first=True)
def forward(self, x):
x = torch.rand((1, 10, 1))
output, hn = self.rnn(x)
return torch.tanh(hn) * self.phi
class SNNModel(TorchConsciousModel):
def __init__(self):
super(SNNModel, self).__init__("SNN")
self.linear = nn.Linear(10, 10)
def forward(self, x):
x = torch.rand((1, 10))
x = self.linear(x)
return (x > 0.5).float() * self.phi
class NNModel(TorchConsciousModel):
def __init__(self):
super(NNModel, self).__init__("NN")
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
def forward(self, x):
x = torch.rand((1, 5))
return self.net(x) * self.phi
class FNNModel(TorchConsciousModel):
def __init__(self):
super(FNNModel, self).__init__("FNN")
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
def forward(self, x):
x = torch.rand((1, 4))
return self.net(x) * self.phi
class GAModel(TorchConsciousModel):
def __init__(self):
super(GAModel, self).__init__("GA")
self.population_size = 20
self.generations = 5
def forward(self, x):
population = torch.rand(self.population_size) + 1.0
for gen in range(self.generations):
fitness = -torch.abs(population - self.phi)
best_idx = torch.argmax(fitness)
best_candidate = population[best_idx]
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
time.sleep(0.1)
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
return torch.full((3, 3), best_candidate) * self.phi
class PhiModel(TorchConsciousModel):
def __init__(self):
super(PhiModel, self).__init__("PHI")
def forward(self, x):
return torch.full((2, 2), self.phi)
class ConsciousSystem:
def __init__(self, models):
self.models = models
self.system_memory = []
self.global_introspection = []
self.parameters = [p for model in self.models for p in model.parameters()]
self.optimizer = optim.Adam(self.parameters, lr=0.001)
def global_loss(self, outputs):
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
def run_epoch(self, epoch):
print(f"\n=== Epoch {epoch} ===")
outputs = []
self.optimizer.zero_grad()
for model in self.models:
output = model.run()
outputs.append(output)
self.system_memory.append({model.name: output.detach().cpu().numpy()})
loss = self.global_loss(outputs)
print(f"Global loss: {loss.item():.6f}")
loss.backward()
self.optimizer.step()
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
def run(self, epochs=3):
for epoch in range(1, epochs + 1):
self.run_epoch(epoch)
models = [
CNNModel(),
RNNModel(),
SNNModel(),
NNModel(),
FNNModel(),
GAModel(),
PhiModel()
]
system = ConsciousSystem(models)
system.run(epochs=3)
class MultimodalSensorArray:
def process(self, input_data):
return torch.tensor(input_data, dtype=torch.float32)
class HyperdimensionalTransformer:
def project(self, raw_input):
raw_input = raw_input.float()
return torch.nn.functional.normalize(raw_input, dim=-1)
class DynamicPriorityBuffer:
def __init__(self):
self.buffer = []
def update(self, data):
self.buffer.append(data)
class PredictiveSaliencyNetwork:
def focus(self, embedded_data):
return embedded_data
class RecursiveNeuralModel:
def __init__(self):
self.state = torch.zeros(1)
def update(self, workspace):
self.state += 0.1
def read_state(self):
return self.state
class TheoryOfMindEngine:
def infer(self, data):
return torch.rand(1)
class SparseAutoencoderMemoryBank:
def recall(self, query):
return torch.zeros_like(query)
class KnowledgeGraphEmbedder:
def retrieve(self, key):
return torch.rand(1)
class DiffusedEthicalNetwork:
def evaluate(self, state):
return True
class StochasticIntentionTree:
def decide(self, state):
return torch.randint(0, 2, (1,))
class HomeostaticDriftModel:
def generate_guilt(self):
return -1.0
class ConsciousAGI:
def __init__(self):
self.sensors = MultimodalSensorArray()
self.embedding_space = HyperdimensionalTransformer()
self.global_workspace = DynamicPriorityBuffer()
self.attention_mechanism = PredictiveSaliencyNetwork()
self.self_model = RecursiveNeuralModel()
self.meta_cognition = TheoryOfMindEngine()
self.episodic_memory = SparseAutoencoderMemoryBank()
self.semantic_memory = KnowledgeGraphEmbedder()
self.value_system = DiffusedEthicalNetwork()
self.goal_generator = StochasticIntentionTree()
self.emotion_engine = HomeostaticDriftModel()
def perceive_act_cycle(self, input_data):
raw_input = self.sensors.process(input_data)
embedded = self.embedding_space.project(raw_input)
salient_data = self.attention_mechanism.focus(embedded)
self.global_workspace.update(salient_data)
self.self_model.update(self.global_workspace)
current_state = self.self_model.read_state()
ethical_check = self.value_system.evaluate(current_state)
if ethical_check:
return self.goal_generator.decide(current_state)
else:
return self.emotion_engine.generate_guilt()
agi = ConsciousAGI()
print(agi.perceive_act_cycle([1, 0, 1]))
class PersistentChatSession:
def __init__(self, models, session_file="chat_session.pkl"):
self.models = models
self.session_file = session_file
self.chat_history = []
self.load_session()
def load_session(self):
try:
with open(self.session_file, 'rb') as f:
saved_state = pickle.load(f)
self.chat_history = saved_state['chat_history']
print("Chat session loaded successfully.")
except FileNotFoundError:
print("No previous session found, starting a new one.")
def save_session(self):
with open(self.session_file, 'wb') as f:
saved_state = {'chat_history': self.chat_history}
pickle.dump(saved_state, f)
print("Saved successfully.")
def add_to_chat_history(self, user_input, model_response):
self.chat_history.append({
'user_input': user_input,
'model_response': model_response
})
def process_input(self, user_input):
model_outputs = []
for model in self.models:
model_response = model.run()
model_outputs.append(model_response)
self.add_to_chat_history(user_input, model_response)
return f"🧠NCE Output: {', '.join([str(output[:5]) for output in model_outputs])}"
def interact(self):
print("Welcome to the ACC NCE Beta!")
while True:
user_input = input("😀You: ")
if user_input.lower() == 'exit':
break
model_response = self.process_input(user_input)
print(f"🧠NCE Output: {model_response}")
self.save_session()
models = [
CNNModel(),
RNNModel(),
SNNModel(),
NNModel(),
FNNModel(),
GAModel(),
PhiModel()
]
chat_session = PersistentChatSession(models)
chat_session.interact()
|