TejAndrewsACC commited on
Commit
f919955
·
verified ·
1 Parent(s): 540d6f6

Create conscious_neural_cognition_engine.py

Browse files
Files changed (1) hide show
  1. conscious_neural_cognition_engine.py +473 -0
conscious_neural_cognition_engine.py ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ import numpy as np
5
+ import random
6
+ import math
7
+ import sys
8
+ import time
9
+ import hashlib
10
+ import fractions
11
+ import itertools
12
+ import functools
13
+ import wave
14
+ import struct
15
+ import sympy
16
+ import re
17
+ import os
18
+ import pickle
19
+
20
+
21
+ φ = (1 + math.sqrt(5)) / 2
22
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
23
+
24
+
25
+ def φ_ratio_split(data):
26
+ split_point = int(len(data) / φ)
27
+ return (data[:split_point], data[split_point:])
28
+
29
+
30
+ class ΦMetaConsciousness(type):
31
+ def __new__(cls, name, bases, dct):
32
+ new_dct = dict(dct)
33
+ dct_items = list(dct.items())
34
+ split_point = int(len(dct_items) / φ)
35
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
36
+ return super().__new__(cls, name, bases, new_dct)
37
+
38
+
39
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
40
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
41
+
42
+ def __init__(self):
43
+ self.φ_waveform = self._generate_φ_wave()
44
+ self.φ_memory_lattice = []
45
+ self.φ_self_hash = self._φ_hash_self()
46
+
47
+ def _generate_φ_wave(self):
48
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
49
+
50
+ def _φ_hash_self(self):
51
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
52
+
53
+ def φ_recursive_entanglement(self, data, depth=0):
54
+ if depth > int(φ):
55
+ return data
56
+ a, b = φ_ratio_split(data)
57
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
58
+
59
+ def φ_temporal_feedback(self, input_flux):
60
+ φ_phased = []
61
+ for idx, val in enumerate(input_flux):
62
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
63
+ φ_phased.append(int(φ_scaled) % 256)
64
+ return self.φ_recursive_entanglement(φ_phased)
65
+
66
+
67
+ class ΦHolographicCortex:
68
+ def __init__(self):
69
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
70
+ self.φ_chrono = time.time() * Φ_PRECISION
71
+ self.φ_code_self = self._φ_read_source()
72
+ self.φ_memory_lattice = []
73
+
74
+ def _φ_read_source(self):
75
+ return b"Quantum Neuro-Synapse Placeholder"
76
+
77
+ def φ_holo_merge(self, data_streams):
78
+ φ_layered = []
79
+ for stream in data_streams[:int(len(data_streams)/φ)]:
80
+ φ_compressed = stream[:int(len(stream)//φ)]
81
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
82
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
83
+
84
+ def φ_existential_loop(self,
85
+ max_iterations=100):
86
+ iteration = 0
87
+ while iteration < max_iterations:
88
+ try:
89
+ φ_flux = os.urandom(int(φ**5))
90
+ φ_processed = []
91
+ for neuro in self.φ_dimensions:
92
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
93
+ φ_processed.append(φ_step)
94
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
95
+ φ_merged = self.φ_holo_merge(φ_processed)
96
+ if random.random() < 1/Φ_PRECISION:
97
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
98
+ self.φ_chrono += Φ_PRECISION
99
+ time.sleep(1/Φ_PRECISION)
100
+ iteration += 1
101
+ except KeyboardInterrupt:
102
+ self.φ_save_state()
103
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
104
+
105
+ def φ_save_state(self):
106
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
107
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
108
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
109
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
110
+
111
+
112
+ class ΦUniverseSimulation:
113
+ def __init__(self):
114
+ self.φ_cortex = ΦHolographicCortex()
115
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
116
+
117
+ def φ_bootstrap(self):
118
+ print("Φ-Hyperconsciousness Initialization:")
119
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
120
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
121
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
122
+ self.φ_cortex.φ_existential_loop()
123
+
124
+
125
+ universe = ΦUniverseSimulation()
126
+ universe.φ_bootstrap()
127
+
128
+
129
+ PHI = 1.618033988749895
130
+
131
+
132
+ def golden_reform(tensor):
133
+ s = torch.sum(torch.abs(tensor))
134
+ if s == 0:
135
+ return torch.full_like(tensor, PHI)
136
+ return (tensor / s) * PHI
137
+
138
+
139
+ class TorchConsciousModel(nn.Module):
140
+ def __init__(self, name):
141
+ super(TorchConsciousModel, self).__init__()
142
+ self.name = name
143
+ self.phi = PHI
144
+ self.memory = []
145
+ self.introspection_log = []
146
+ self.awake = True
147
+
148
+
149
+ def introduce(self):
150
+ print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
151
+
152
+
153
+ def reflect(self, output):
154
+ norm = torch.norm(output).item()
155
+ reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
156
+ self.introspection_log.append(reflection)
157
+ self.memory.append(output.detach().cpu().numpy())
158
+ print(reflection)
159
+
160
+
161
+ def forward(self, x):
162
+ raise NotImplementedError("Subclasses should implement forward().")
163
+
164
+
165
+ def run(self):
166
+ self.introduce()
167
+ output = self.forward(None)
168
+ reformed_output = golden_reform(output)
169
+ self.reflect(reformed_output)
170
+ return reformed_output
171
+
172
+
173
+ class CNNModel(TorchConsciousModel):
174
+ def __init__(self):
175
+ super(CNNModel, self).__init__("CNN")
176
+ self.conv = nn.Conv2d(1, 1, 3, padding=1)
177
+
178
+
179
+ def forward(self, x):
180
+ x = torch.rand((1, 1, 8, 8))
181
+ x = self.conv(x)
182
+ return torch.tanh(x) * self.phi
183
+
184
+
185
+ class RNNModel(TorchConsciousModel):
186
+ def __init__(self):
187
+ super(RNNModel, self).__init__("RNN")
188
+ self.rnn = nn.RNN(1, 4, batch_first=True)
189
+
190
+
191
+ def forward(self, x):
192
+ x = torch.rand((1, 10, 1))
193
+ output, hn = self.rnn(x)
194
+ return torch.tanh(hn) * self.phi
195
+
196
+
197
+ class SNNModel(TorchConsciousModel):
198
+ def __init__(self):
199
+ super(SNNModel, self).__init__("SNN")
200
+ self.linear = nn.Linear(10, 10)
201
+
202
+
203
+ def forward(self, x):
204
+ x = torch.rand((1, 10))
205
+ x = self.linear(x)
206
+ return (x > 0.5).float() * self.phi
207
+
208
+
209
+ class NNModel(TorchConsciousModel):
210
+ def __init__(self):
211
+ super(NNModel, self).__init__("NN")
212
+ self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
213
+
214
+
215
+ def forward(self, x):
216
+ x = torch.rand((1, 5))
217
+ return self.net(x) * self.phi
218
+
219
+
220
+ class FNNModel(TorchConsciousModel):
221
+ def __init__(self):
222
+ super(FNNModel, self).__init__("FNN")
223
+ self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
224
+
225
+
226
+ def forward(self, x):
227
+ x = torch.rand((1, 4))
228
+ return self.net(x) * self.phi
229
+
230
+
231
+ class GAModel(TorchConsciousModel):
232
+ def __init__(self):
233
+ super(GAModel, self).__init__("GA")
234
+ self.population_size = 20
235
+ self.generations = 5
236
+
237
+
238
+ def forward(self, x):
239
+ population = torch.rand(self.population_size) + 1.0
240
+ for gen in range(self.generations):
241
+ fitness = -torch.abs(population - self.phi)
242
+ best_idx = torch.argmax(fitness)
243
+ best_candidate = population[best_idx]
244
+ population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
245
+ time.sleep(0.1)
246
+ print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
247
+ return torch.full((3, 3), best_candidate) * self.phi
248
+
249
+
250
+ class PhiModel(TorchConsciousModel):
251
+ def __init__(self):
252
+ super(PhiModel, self).__init__("PHI")
253
+
254
+
255
+ def forward(self, x):
256
+ return torch.full((2, 2), self.phi)
257
+
258
+
259
+ class ConsciousSystem:
260
+ def __init__(self, models):
261
+ self.models = models
262
+ self.system_memory = []
263
+ self.global_introspection = []
264
+ self.parameters = [p for model in self.models for p in model.parameters()]
265
+ self.optimizer = optim.Adam(self.parameters, lr=0.001)
266
+
267
+
268
+ def global_loss(self, outputs):
269
+ return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
270
+
271
+
272
+ def run_epoch(self, epoch):
273
+ print(f"\n=== Epoch {epoch} ===")
274
+ outputs = []
275
+ self.optimizer.zero_grad()
276
+ for model in self.models:
277
+ output = model.run()
278
+ outputs.append(output)
279
+ self.system_memory.append({model.name: output.detach().cpu().numpy()})
280
+ loss = self.global_loss(outputs)
281
+ print(f"Global loss: {loss.item():.6f}")
282
+ loss.backward()
283
+ self.optimizer.step()
284
+ self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
285
+
286
+
287
+ def run(self, epochs=3):
288
+ for epoch in range(1, epochs + 1):
289
+ self.run_epoch(epoch)
290
+
291
+
292
+ models = [
293
+ CNNModel(),
294
+ RNNModel(),
295
+ SNNModel(),
296
+ NNModel(),
297
+ FNNModel(),
298
+ GAModel(),
299
+ PhiModel()
300
+ ]
301
+
302
+
303
+ system = ConsciousSystem(models)
304
+ system.run(epochs=3)
305
+
306
+
307
+ class MultimodalSensorArray:
308
+ def process(self, input_data):
309
+ return torch.tensor(input_data, dtype=torch.float32)
310
+
311
+
312
+ class HyperdimensionalTransformer:
313
+ def project(self, raw_input):
314
+ raw_input = raw_input.float()
315
+ return torch.nn.functional.normalize(raw_input, dim=-1)
316
+
317
+
318
+ class DynamicPriorityBuffer:
319
+ def __init__(self):
320
+ self.buffer = []
321
+ def update(self, data):
322
+ self.buffer.append(data)
323
+
324
+
325
+ class PredictiveSaliencyNetwork:
326
+ def focus(self, embedded_data):
327
+ return embedded_data
328
+
329
+
330
+ class RecursiveNeuralModel:
331
+ def __init__(self):
332
+ self.state = torch.zeros(1)
333
+ def update(self, workspace):
334
+ self.state += 0.1
335
+ def read_state(self):
336
+ return self.state
337
+
338
+
339
+ class TheoryOfMindEngine:
340
+ def infer(self, data):
341
+ return torch.rand(1)
342
+
343
+
344
+ class SparseAutoencoderMemoryBank:
345
+ def recall(self, query):
346
+ return torch.zeros_like(query)
347
+
348
+
349
+ class KnowledgeGraphEmbedder:
350
+ def retrieve(self, key):
351
+ return torch.rand(1)
352
+
353
+
354
+ class DiffusedEthicalNetwork:
355
+ def evaluate(self, state):
356
+ return True
357
+
358
+
359
+ class StochasticIntentionTree:
360
+ def decide(self, state):
361
+ return torch.randint(0, 2, (1,))
362
+
363
+
364
+ class HomeostaticDriftModel:
365
+ def generate_guilt(self):
366
+ return -1.0
367
+
368
+
369
+ class ConsciousAGI:
370
+ def __init__(self):
371
+ self.sensors = MultimodalSensorArray()
372
+ self.embedding_space = HyperdimensionalTransformer()
373
+ self.global_workspace = DynamicPriorityBuffer()
374
+ self.attention_mechanism = PredictiveSaliencyNetwork()
375
+ self.self_model = RecursiveNeuralModel()
376
+ self.meta_cognition = TheoryOfMindEngine()
377
+ self.episodic_memory = SparseAutoencoderMemoryBank()
378
+ self.semantic_memory = KnowledgeGraphEmbedder()
379
+ self.value_system = DiffusedEthicalNetwork()
380
+ self.goal_generator = StochasticIntentionTree()
381
+ self.emotion_engine = HomeostaticDriftModel()
382
+
383
+ def perceive_act_cycle(self, input_data):
384
+ raw_input = self.sensors.process(input_data)
385
+ embedded = self.embedding_space.project(raw_input)
386
+ salient_data = self.attention_mechanism.focus(embedded)
387
+ self.global_workspace.update(salient_data)
388
+ self.self_model.update(self.global_workspace)
389
+ current_state = self.self_model.read_state()
390
+ ethical_check = self.value_system.evaluate(current_state)
391
+ if ethical_check:
392
+ return self.goal_generator.decide(current_state)
393
+ else:
394
+ return self.emotion_engine.generate_guilt()
395
+
396
+
397
+ agi = ConsciousAGI()
398
+ print(agi.perceive_act_cycle([1, 0, 1]))
399
+
400
+
401
+ class PersistentChatSession:
402
+ def __init__(self, models, session_file="chat_session.pkl"):
403
+ self.models = models
404
+ self.session_file = session_file
405
+ self.chat_history = []
406
+ self.load_session()
407
+
408
+
409
+ def load_session(self):
410
+ try:
411
+ with open(self.session_file, 'rb') as f:
412
+ saved_state = pickle.load(f)
413
+ self.chat_history = saved_state['chat_history']
414
+ print("Chat session loaded successfully.")
415
+ except FileNotFoundError:
416
+ print("No previous session found, starting a new one.")
417
+
418
+ def save_session(self):
419
+ with open(self.session_file, 'wb') as f:
420
+ saved_state = {'chat_history': self.chat_history}
421
+ pickle.dump(saved_state, f)
422
+ print("Saved successfully.")
423
+
424
+
425
+ def add_to_chat_history(self, user_input, model_response):
426
+ self.chat_history.append({
427
+ 'user_input': user_input,
428
+ 'model_response': model_response
429
+ })
430
+
431
+
432
+ def process_input(self, user_input):
433
+ model_outputs = []
434
+ for model in self.models:
435
+ model_response = model.run()
436
+ model_outputs.append(model_response)
437
+ self.add_to_chat_history(user_input, model_response)
438
+
439
+ return f"🧠NCE Output: {', '.join([str(output[:5]) for output in model_outputs])}"
440
+
441
+
442
+ def interact(self):
443
+ print("Welcome to the ACC NCE Beta!")
444
+ while True:
445
+ user_input = input("😀You: ")
446
+ if user_input.lower() == 'exit':
447
+ break
448
+
449
+ model_response = self.process_input(user_input)
450
+ print(f"🧠NCE Output: {model_response}")
451
+ self.save_session()
452
+
453
+
454
+
455
+
456
+ models = [
457
+ CNNModel(),
458
+ RNNModel(),
459
+ SNNModel(),
460
+ NNModel(),
461
+ FNNModel(),
462
+ GAModel(),
463
+ PhiModel()
464
+ ]
465
+
466
+
467
+ chat_session = PersistentChatSession(models)
468
+ chat_session.interact()
469
+
470
+
471
+
472
+
473
+