BioMistral-Hermes-Dare

BioMistral-Hermes-Dare is a merge of the following models:

Evaluations

Benchmark BioMistral-Hermes-Dare Orca-2-7b llama-2-7b meditron-7b meditron-70b
MedMCQA
ClosedPubMedQA
PubMedQA
MedQA
MedQA4
MedicationQA
MMLU Medical
MMLU
TruthfulQA
GSM8K
ARC
HellaSwag
Winogrande

More details on the Open LLM Leaderboard evaluation results can be found here.

🧩 Configuration

models:
  - model: BioMistral/BioMistral-7B-DARE
    parameters:
      weight: 1.0
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      weight: 0.6
merge_method: linear
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Technoculture/BioMistral-Hermes-Dare"
messages = [{"role": "user", "content": "I am feeling sleepy these days"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
39
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Collection including Technoculture/BioMistral-Hermes-Dare