File size: 4,996 Bytes
73c95a1
 
81468ae
 
 
 
 
 
 
 
cc0d74c
81468ae
 
 
 
 
73c95a1
81468ae
73c95a1
0283d95
81468ae
cc0d74c
81468ae
 
 
cc0d74c
81468ae
 
 
 
 
 
 
 
 
 
 
 
 
73c95a1
 
275bf8b
 
 
73c95a1
a464e0f
73c95a1
 
275bf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180714c
 
 
 
 
275bf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c95a1
275bf8b
 
 
 
 
 
 
73c95a1
 
 
 
275bf8b
73c95a1
 
275bf8b
73c95a1
 
275bf8b
 
 
 
 
 
 
b7fe2ca
 
 
 
 
 
 
 
73c95a1
81468ae
 
 
 
dbdbca7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
library_name: transformers
tags:
- reward
- RM
- Code
- AceCode
- AceCoder
license: mit
datasets:
- TIGER-Lab/AceCode-87K
- TIGER-Lab/AceCodePair-300K
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
---
# 🂡 AceCoder

[Paper](https://arxiv.org/abs/2502.01718) | 
[Github](https://github.com/TIGER-AI-Lab/AceCoder) |
[AceCode-87K](https://huggingface.co/datasets/TIGER-Lab/AceCode-87K) |
[AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K) |
[RM/RL Models](https://huggingface.co/collections/TIGER-Lab/acecoder-67a16011a6c7d65cad529eba)

We introduce AceCoder, the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. To do this, we curated the dataset AceCode-87K, where we start from a seed code dataset and prompt powerful LLMs to "imagine" proper test cases for the coding question and filter the noisy ones. We sample inferences from existing coder models and compute their pass rate as the reliable and verifiable rewards for both training the reward model and conducting the reinforcement learning for coder LLM.

**This model is the official AceCodeRM-7B trained from Qwen2.5-Coder-7B-Instruct on [TIGER-Lab/AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K)**

![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png)


## Performance on Best-of-N sampling

![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png)

## Usage

- To use the RM to produce rewards, please apply the following example codes:

```python
"""pip install git+https://github.com/TIGER-AI-Lab/AceCoder"""
from acecoder import Qwen2ForCausalRM
from transformers import AutoTokenizer

model_path = "TIGER-Lab/AceCodeRM-7B"
model = Qwen2ForCausalRM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

question = """\
Given an array of numbers, write a function runningSum that returns an array where each element at index i is the sum of all elements from index 0 to i (inclusive).
For example:
Input: nums = [1,2,3,4]
Output: [1,3,6,10]
"""

program_with_3_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(1, len(nums)):
        result.append(nums[i])
        current_sum += nums[i]
    return result
"""

program_with_2_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(0, len(nums)):
        result.append(nums[i])
        current_sum += nums[i]
    return result
"""
    
program_with_1_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(0, len(nums)):
        result.append(current_sum)
        current_sum += nums[i]
    return result
"""
program_correct = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for num in nums:
        current_sum += num
        result.append(current_sum)
    return result
"""

program_chats = [
    [
        {
            "content": question,
            "role": "user",
        },
        {
            "role": "assistant",
            "content": program
        }
    ] for program in [program_with_3_errors, program_with_2_errors, program_with_1_errors, program_correct]
]

input_tokens = tokenizer.apply_chat_template(
    program_chats,
    tokenize=True,
    return_dict=True,
    padding=True,
    return_tensors="pt",
).to(model.device)

_, _, values = model(
    **input_tokens,
    output_hidden_states=True,
    return_dict=True,
    use_cache=False,    
)
masks = input_tokens["attention_mask"]
rm_scores = values.gather(
    dim=-1, index=(masks.sum(dim=-1, keepdim=True) - 1)
) # find the last token (eos) in each sequence, a
rm_scores = rm_scores.squeeze()

print("RM Scores:", rm_scores)
print("Score of program with 3 errors:", rm_scores[0].item())
print("Score of program with 2 errors:", rm_scores[1].item())
print("Score of program with 1 errors:", rm_scores[2].item())
print("Score of correct program:", rm_scores[3].item())
"""
RM Scores: tensor([-20.5058,  -1.7867,   0.4395,  23.0689], device='cuda:0',
       grad_fn=<SqueezeBackward0>)
Score of program with 3 errors: -20.505754470825195
Score of program with 2 errors: -1.7866804599761963
Score of program with 1 errors: 0.43949759006500244
Score of correct program: 23.068859100341797
"""
```


- To use the RM for the RL tuning, please refer to our [Github Code](https://github.com/TIGER-AI-Lab/AceCoder) for more details

## Citation
```bibtex
@article{AceCoder,
    title={AceCoder: Acing Coder RL via Automated Test-Case Synthesis},
    author={Zeng, Huaye and Jiang, Dongfu and Wang, Haozhe and Nie, Ping and Chen, Xiaotong and Chen, Wenhu},
    journal={ArXiv},
    year={2025},
    volume={abs/2207.01780}
}
```