SystemAdmin123's picture
End of training
f2c65d1 verified
|
raw
history blame
3.94 kB
metadata
library_name: transformers
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - argilla/databricks-dolly-15k-curated-en
model-index:
  - name: tiny-random-LlamaForCausalLM
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
  path: argilla/databricks-dolly-15k-curated-en
  type:
    field_input: original-instruction
    field_instruction: original-instruction
    field_output: original-response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 200
flash_attention: true
gpu_memory_limit: 80GiB
group_by_length: true
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/outputs/tiny-random-LlamaForCausalLM
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 400
save_total_limit: 1
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
torch_dtype: bf16
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05

tiny-random-LlamaForCausalLM

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set:

  • Loss: 8.6989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 125
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 10.3763
9.7054 0.0592 200 9.6862
8.9091 0.1184 400 8.9612
8.7257 0.1776 600 8.7627
8.7416 0.2368 800 8.7109
8.5944 0.2959 1000 8.6982
8.673 0.3551 1200 8.6963
8.7511 0.4143 1400 8.6972
8.729 0.4735 1600 8.6961
8.6325 0.5327 1800 8.6948
8.6338 0.5919 2000 8.6946
8.7376 0.6511 2200 8.6954
8.573 0.7103 2400 8.6989

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0