File size: 3,735 Bytes
f2c65d1 e7d262f f2c65d1 7a7c676 f2c65d1 300dd0a f2c65d1 e7d262f 300dd0a f2c65d1 300dd0a f2c65d1 300dd0a 7a7c676 e7d262f f2c65d1 e7d262f f2c65d1 7a7c676 f2c65d1 300dd0a f2c65d1 300dd0a e7d262f f2c65d1 e7d262f f2c65d1 7a7c676 f2c65d1 300dd0a f2c65d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
library_name: transformers
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
datasets:
- argilla/databricks-dolly-15k-curated-en
model-index:
- name: tiny-random-LlamaForCausalLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
batch_size: 128
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
path: argilla/databricks-dolly-15k-curated-en
type:
field_input: original-instruction
field_instruction: original-instruction
field_output: original-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 20
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/tiny-random-LlamaForCausalLM
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 10000
micro_batch_size: 32
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/tiny-random-LlamaForCausalLM
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 20
save_total_limit: 1
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
torch_dtype: bf16
training_args_kwargs:
hub_private_repo: true
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
```
</details><br>
# tiny-random-LlamaForCausalLM
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
It achieves the following results on the evaluation set:
- Loss: 10.1817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log | 0.1667 | 1 | 10.3764 |
| 10.3632 | 3.3333 | 20 | 10.3538 |
| 10.3073 | 6.6667 | 40 | 10.2840 |
| 10.2203 | 10.0 | 60 | 10.2082 |
| 10.1812 | 13.3333 | 80 | 10.1828 |
| 10.1767 | 16.6667 | 100 | 10.1817 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|