File size: 33,345 Bytes
7eb0198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
import torch
from einops import rearrange
from torch import nn
from typing import List, Optional, Tuple, Union
from .utils import extend_instance, stack_with_padding, stack_with_padding_2D_attention, num_params, getattr_recursive
from .helpers import DecoupledEmbedding, DecoupledLinear, VLMOutputWithPast
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers import CLIPVisionModel
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer
class VLM(nn.Module):
"""
Generic vision-language model (VLM) class.
A VLM consists of four components:
1. A vision encoder that extracts features from pixels, e.g. CLIP
input: (B, T_img, F, C, H, W)
output: (B, T_img, F, v, d)
2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
input: (B, T_img, F, v, d)
output: (B, T_img, n, d)
3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
4. A language model
"""
def __init__(
self,
vision_encoder: nn.Module,
vision_tokenizer: nn.Module,
lang_model: nn.Module,
initial_tokenizer_len: int,
pad_token_id: int,
gradient_checkpointing: bool = False,
base_img_size: Optional[int] = None,
):
"""
Args:
vision_encoder (nn.Module): e.g. CLIP
vision_tokenizer (nn.Module): e.g. PerceiverResampler
lang_model (nn.Module): e.g. MPT
initial_tokenizer_len (int): size of the original tokenizer vocab
pad_token_id (int): id of the pad token
gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
"""
super().__init__()
# save dimension information
self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
if hasattr(lang_model.config, "d_model"):
self.lang_hidden_dim = lang_model.config.d_model # mpt uses d_model
else:
self.lang_hidden_dim = lang_model.config.hidden_size
self.vis_embedding_dim = vision_tokenizer.dim_media
self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media
# core components
self.vision_encoder = vision_encoder
self.vision_tokenizer = vision_tokenizer
self.lang_model = lang_model
if base_img_size is None:
if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(self.vision_encoder, SiglipVisionTransformer):
base_img_size = self.vision_encoder.config.image_size
else:
base_img_size = self.vision_encoder.image_size[0]
self.base_img_size = base_img_size
# lm embeddings
self.pad_token_id = pad_token_id
self.initial_tokenizer_len = initial_tokenizer_len
input_embeds = DecoupledEmbedding(
max_original_id=initial_tokenizer_len - 1,
num_additional_embeddings=len(self.special_tokens),
_weight=self.lang_model.get_input_embeddings().weight,
pad_token_id=self.pad_token_id,
)
if hasattr(input_embeds, "additional_embedding"):
input_embeds.additional_embedding.weight.data.normal_(
mean=0.0,
std=self.lang_model.config.initializer_range
if hasattr(self.lang_model.config, "initializer_range")
else 0.02,
)
self.lang_model.set_input_embeddings(input_embeds)
out_embeds = DecoupledLinear(
max_original_id=initial_tokenizer_len - 1,
additional_out_features=len(self.special_tokens),
_weight=self.lang_model.get_output_embeddings().weight,
_bias=self.lang_model.get_output_embeddings().bias if hasattr(self.lang_model.get_output_embeddings(), "bias") else None,
)
if hasattr(out_embeds, "additional_fc"):
out_embeds.additional_fc.weight.data.normal_(
mean=0.0,
std=self.lang_model.config.initializer_range
if hasattr(self.lang_model.config, "initializer_range")
else 0.02,
)
self.lang_model.set_output_embeddings(out_embeds)
# gradient checkpointing
self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing
def forward(
self,
vision_x: Optional[torch.Tensor],
lang_x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
] = None,
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
**kwargs,
):
"""
Args:
vision_x: Vision input
shape (B, T_img, F, C, H, W) with F=1
only F = 1 is supported (single-frame videos)
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
only the first number of media tokens in lang_x are used
lang_x: Language input ids, with media tokens denoting where
visual media should be inserted.
shape (B, T_txt)
attention_mask: Attention mask. Defaults to None.
labels: Labels. Defaults to None.
shape (B, T_txt)
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
list of length = number of decoder layers in the LM
exact implementation depends on LM, see Hugging Face docs
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
shape (B, T_txt)
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
If True, includes key_values, media_locations, and vision_tokens in the output.
"""
assert not (past_vision_tokens is None) ^ (
past_media_locations is None
), "past_vision_tokens and past_media_locations must both be None or both be not None"
# convert pixels to vision tokens
if vision_x is not None:
vision_features = self._encode_vision_x(vision_x=vision_x)
vision_tokens = self.vision_tokenizer(vision_features)
else:
vision_tokens = None
# fuse the vision and language tokens
new_inputs = self._prepare_inputs_for_forward(
vision_tokens=vision_tokens,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
past_key_values=past_key_values,
past_media_locations=past_media_locations,
padding_side="right",
past_vision_tokens=past_vision_tokens,
)
output = self.lang_model(
**new_inputs,
use_cache=use_cache,
past_key_values=past_key_values,
**kwargs,
)
# postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
# or to add the past_vision_tokens and past_media_locations to the output
output = self._postprocess_outputs_from_forward(
output=output,
lang_x=lang_x,
vision_tokens=vision_tokens,
use_cache=use_cache,
past_vision_tokens=past_vision_tokens,
past_media_locations=past_media_locations,
)
# postforward hooks
self._post_forward_hook()
return output
def _encode_vision_x(self, vision_x: torch.Tensor):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x: Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
with torch.no_grad():
if self.vision_encoder.__class__.__name__ == "TimmModel":
vision_x = self.vision_encoder.trunk.forward_features(vision_x)
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
vision_x = self.vision_encoder(vision_x).last_hidden_state
else:
vision_x = self.vision_encoder(vision_x)[1] # OpenCLIP returns tuples
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
return vision_x
def _concat_vision_cache(
self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
):
"""
Helper function to include the past vision tokens and past media locations in the output.
"""
if use_cache:
if past_media_locations is not None and past_vision_tokens is not None:
if vision_tokens is not None:
updated_vision_tokens = torch.cat(
[
past_vision_tokens,
vision_tokens,
],
dim=1,
)
else:
updated_vision_tokens = past_vision_tokens
updated_media_locations = torch.cat(
[
past_media_locations,
lang_x == self.media_token_id,
],
dim=1,
)
else:
updated_vision_tokens = vision_tokens
updated_media_locations = lang_x == self.media_token_id
else:
updated_vision_tokens = None
updated_media_locations = None
return updated_vision_tokens, updated_media_locations
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
] = None,
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
see documentation for forward
lang_x (torch.Tensor): Language input
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
**kwargs: see generate documentation in Hugging Face CausalLM models.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
num_beams = kwargs.pop("num_beams", 1)
# convert pixels to vision tokens
if vision_x is not None:
vision_features = self._encode_vision_x(vision_x=vision_x)
vision_tokens = self.vision_tokenizer(vision_features)
else:
vision_tokens = None
# fuse the vision and language tokens
# for xattn, vision_x and media_location are repeat_interleaved s.t.
# the total batch size is B * num_beams
new_inputs = self._prepare_inputs_for_forward(
vision_tokens=vision_tokens,
lang_x=lang_x,
attention_mask=attention_mask,
past_key_values=past_key_values,
past_media_locations=past_media_locations,
past_vision_tokens=past_vision_tokens,
padding_side="left",
num_beams=num_beams,
)
output = self.lang_model.generate(
**new_inputs,
past_key_values=past_key_values,
num_beams=num_beams,
use_cache=True,
**kwargs,
)
self._post_forward_hook()
return output
@property
def num_trainable_params(self):
"""Print the number of trainable parameters"""
return num_params(self, filter_to_trainable=True)
def set_trainable(self):
"""
Freeze appropriate parameters in the model.
"""
raise NotImplementedError
def group_params_by_weight_decay(self):
"""
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
"""
params_with_wd, params_without_wd = [], []
for n, p in self.named_parameters():
if p.requires_grad:
if self._should_apply_weight_decay(n):
params_with_wd.append(p)
else:
params_without_wd.append(p)
return params_with_wd, params_without_wd
def _should_apply_weight_decay(self, parameter_name):
"""
Return whether weight decay should be applied to a parameter.
"""
raise NotImplementedError
@property
def special_tokens(self):
"""
Returns a dict mapping from the attribute name of a special token to its string format,
e.g. "media_token": "<image>"
"""
assert (
"media_token" in self._special_tokens
), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
return self._special_tokens
@property
def special_token_ids(self):
"""
Returns a list of the special token ids
"""
return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]
def set_special_token_ids(self, string_to_ids):
"""
Args:
string_to_ids (dict): mapping from token string to id
"""
assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
for att_name, token_str in self.special_tokens.items():
token_id = string_to_ids[token_str]
setattr(self, f"{att_name}_id", token_id)
setattr(self.lang_model, f"{att_name}_id", token_id)
def init_gradient_checkpointing(self):
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointWrapper,
CheckpointImpl,
apply_activation_checkpointing,
)
from functools import partial
non_reentrant_wrapper = partial(
checkpoint_wrapper,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
self,
checkpoint_wrapper_fn=non_reentrant_wrapper,
check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
and not isinstance(m, CheckpointWrapper),
)
class VLMWithLanguageStream(VLM):
"""
VLM that fuses modalities by inserting vision tokens directly into the language stream.
"""
def __init__(
self,
vision_encoder: nn.Module,
vision_tokenizer: nn.Module,
lang_model: nn.Module,
initial_tokenizer_len: int,
pad_token_id: int,
decoder_layers_attr_name: str = None,
gradient_checkpointing: bool = False,
base_img_size: Optional[int] = None,
):
super().__init__(
vision_encoder=vision_encoder,
vision_tokenizer=vision_tokenizer,
lang_model=lang_model,
initial_tokenizer_len=initial_tokenizer_len,
pad_token_id=pad_token_id,
base_img_size=base_img_size,
gradient_checkpointing=gradient_checkpointing,
)
self.decoder_layers_attr_name = decoder_layers_attr_name
for block in getattr_recursive(self.lang_model, self.decoder_layers_attr_name):
block._use_gradient_checkpointing = gradient_checkpointing
@staticmethod
def _make_modality_mutual_mask(
attention_mask_2d: torch.Tensor,
image_start_idx: int,
text_start_idx: int,
text_end_idx: int, # the end of the question in the SFT stage
input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
):
"""
Make non-causal mask between modalities.
"""
tgt_len = input_ids_shape[0]
mask = torch.full((tgt_len, tgt_len), 0, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 1)
# enable vision tokens to attend to text tokens
mask[image_start_idx:text_start_idx, text_start_idx:text_end_idx] = 1
mask = mask.to(dtype)
mask = mask[None, :, :].expand(1, tgt_len, tgt_len)
expanded_mask = attention_mask_2d[None, None, :].expand(1, tgt_len, tgt_len).to(torch.float32)
inverted_mask = 1.0 - expanded_mask
expanded_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(torch.float32).min)
expanded_attn_mask = mask.masked_fill(expanded_attn_mask.bool(), 0)
# expanded_attn_mask + causal_4d_mask can cause some overflow
expanded_4d_mask = expanded_attn_mask
return expanded_4d_mask
def _prepare_inputs_for_forward(
self,
vision_tokens: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor,
labels: torch.Tensor = None,
past_key_values=None,
vision_attention_mask: Optional[torch.Tensor] = None,
past_media_locations: torch.Tensor = None,
past_vision_tokens: torch.Tensor = None,
padding_side: str = "left",
num_beams: int = 1,
):
"""
Insert the vision tokens directly into the language stream/
This requires us to modify the input_ids, attention_mask, and labels.
[NOTE]: This function can be changed to fit the ablation setting of putting text before images.
"""
if past_key_values is not None:
past_len = past_key_values[0][0].shape[2]
assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
"Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
+ "Check that you've expanded the attention mask to account for past image tokens."
)
if vision_tokens is None:
return {
"input_ids": lang_x,
"attention_mask": attention_mask,
"labels": labels,
}
# get the language embeddings
lang_embeds = self.lang_model.get_input_embeddings()(lang_x)
# build up the multimodal embeddings
B = lang_x.shape[0]
has_labels = labels is not None
multimodal_embeds = []
multimodal_attention_mask = []
multimodal_labels = [] if has_labels else None
for i in range(B):
# get index of <image> tokens in lang_x[i]
image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]
# get the <|assistant|> token index, hardcode for now but can easily get from tokenizer's special tokens
# assume only one <|assistant|> token, i.e., single-turn
question_token_idx = torch.where(lang_x[i] == 32001)[0]
if len(question_token_idx) != 0:
question_token_idx = question_token_idx[0]
else:
question_token_idx = 0
if len(image_token_idxs) == 0:
multimodal_embeds.append(lang_embeds[i].clone())
new_attention_mask = self._make_modality_mutual_mask(
attention_mask_2d=attention_mask[i].clone(),
image_start_idx=0,
text_start_idx=0,
text_end_idx=question_token_idx,
input_ids_shape=attention_mask[i].shape,
dtype=attention_mask[i].dtype,
device=attention_mask[i].device,
)
multimodal_attention_mask.append(new_attention_mask)
if has_labels:
multimodal_labels.append(labels[i].clone())
continue
# since an image is represented by self.num_tokens_per_vis tokens, we need to offset the image_token_idxs
# loop through the image_token_idxs and insert the vision tokens
new_embed = lang_embeds[i].clone()
new_attention_mask = (
attention_mask[i].clone() if attention_mask is not None else None
)
if has_labels:
new_label = labels[i].clone()
for img_num in range(len(image_token_idxs)):
img_idx = image_token_idxs[img_num]
assert (
vision_tokens[i][img_num].shape[0] == self.num_tokens_per_vis
), f"vision token number mismatch: image embedding ({vision_tokens[i][img_num].shape[0]}) \
vs. model.num_tokens_per_vis ({self.num_tokens_per_vis})"
# By default, vision tokens are not padded.
num_vis_tokens = self.num_tokens_per_vis
vis_attention_mask = torch.ones(
num_vis_tokens, dtype=torch.long
).to(attention_mask.device)
# Offset the rest of image tokens with current num_vis_tokens
for j in range(img_num+1, len(image_token_idxs)):
image_token_idxs[j] += num_vis_tokens
new_embed = torch.cat(
(
new_embed[:img_idx],
vision_tokens[i][img_num],
new_embed[img_idx + 1 :],
),
dim=0,
)
new_attention_mask = torch.cat(
(
new_attention_mask[:img_idx],
vis_attention_mask,
new_attention_mask[img_idx + 1 :],
),
dim=0,
)
new_attention_mask = self._make_modality_mutual_mask(
attention_mask_2d=new_attention_mask,
image_start_idx=img_idx,
text_start_idx=img_idx+len(vis_attention_mask), # 1+128 -> start position of text
text_end_idx=question_token_idx+len(vis_attention_mask),
input_ids_shape=new_attention_mask.shape, # (252)
dtype=new_attention_mask.dtype,
device=new_attention_mask.device,
)
if has_labels:
new_label = torch.cat(
(
new_label[:img_idx],
torch.ones(num_vis_tokens, dtype=torch.long).to(
labels.device
)
* -100,
new_label[img_idx + 1 :],
),
dim=0,
)
multimodal_embeds.append(new_embed)
multimodal_attention_mask.append(new_attention_mask)
if has_labels:
multimodal_labels.append(new_label)
# stack
multimodal_embeds = stack_with_padding(
multimodal_embeds,
padding_value=self.pad_token_id,
padding_side=padding_side,
)
multimodal_attention_mask = stack_with_padding_2D_attention(
multimodal_attention_mask,
)
if has_labels:
multimodal_labels = stack_with_padding(
multimodal_labels,
padding_value=-100,
padding_side=padding_side,
)
return {
"inputs_embeds": multimodal_embeds,
"attention_mask": multimodal_attention_mask,
"labels": multimodal_labels,
}
def _postprocess_outputs_from_forward(
self,
output: CausalLMOutputWithPast,
lang_x: torch.Tensor,
vision_tokens: torch.Tensor,
past_vision_tokens: torch.Tensor,
past_media_locations: torch.Tensor,
use_cache: bool = False,
):
# Include the past vision tokens and past media locations in the output
updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
lang_x=lang_x,
vision_tokens=vision_tokens,
past_vision_tokens=past_vision_tokens,
past_media_locations=past_media_locations,
use_cache=use_cache,
)
# return logits that are the same shape as the original input_ids
logits = output.logits
batch_logits = []
B, T_txt = lang_x.shape
for i in range(B):
sequence_logits = []
logits_j = 0
img_id = 0
for j in range(T_txt):
if lang_x[i, j] != self.media_token_id:
sequence_logits.append(logits[i, logits_j])
logits_j += 1
else:
# append the logit for the first image token, then skip over the rest
# note: the model actually learns to predict <im_patch>, not <image>
sequence_logits.append(logits[i, logits_j])
# logits_j += self.num_tokens_per_vis
# Offset in account of dynamic num_vis_tokens.
logits_j += vision_tokens[i][img_id].shape[0]
img_id += 1
sequence_logits = torch.stack(sequence_logits, dim=0) # (B, vocab_size)
batch_logits.append(sequence_logits)
batch_logits = torch.stack(batch_logits, dim=0) # (B, T_txt, vocab_size)
# The final logits shape should be the same as the original input_ids shape
assert batch_logits.shape[:2] == (B, T_txt)
# assemble the output
output = VLMOutputWithPast(
loss=output.loss,
logits=batch_logits,
past_key_values=output.past_key_values,
hidden_states=output.hidden_states,
attentions=output.attentions,
past_media_locations=updated_media_locations,
past_vision_tokens=updated_vision_tokens,
)
return output
def _post_forward_hook(self):
pass
def get_fsdp_lambda_fn(self):
"""
Returns the lambda function used to decide how to perform FSDP wrapping.
"""
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointWrapper,
)
decoder_block_class = getattr_recursive(
self.lang_model, self.decoder_layers_attr_name
)[0].__class__
def lambda_fn(module: nn.Module):
if getattr(module, "_use_gradient_checkpointing", False) and not isinstance(
module, CheckpointWrapper
):
return False
if module is self.vision_tokenizer:
return True
if isinstance(module, decoder_block_class):
return True
return lambda_fn
def get_fsdp_wrapping_policy(self):
"""
Returns the policy used to decide how to perform FSDP wrapping.
"""
from torch.distributed.fsdp.wrap import _or_policy, _module_wrap_policy, transformer_auto_wrap_policy
from open_clip.transformer import VisionTransformer, ResidualAttentionBlock
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from transformers.models.phi.modeling_phi import PhiDecoderLayer
# for Phi-3 hot fiix
try:
import importlib
commit_hash = str(type(self.lang_model)).split('instruct.')[1].split('.modeling')[0]
module_name = f"transformers_modules.microsoft.Phi-3-mini-128k-instruct.{commit_hash}.modeling_phi3"
module = importlib.import_module(module_name)
Phi3DecoderLayer = module.Phi3DecoderLayer
import_phi3 = True
except IndexError:
import_phi3 = False
# hard code the wrap module name
# vision
if isinstance(self.vision_encoder, SiglipVisionModel):
from transformers import SiglipVisionModel
vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={SiglipVisionModel})
from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer, SiglipVisionTransformer, SiglipVisionEmbeddings, SiglipMultiheadAttentionPoolingHead
# import torch.nn.LayerNorm as LayerNorm
transformer_layer_cls_vit = {SiglipEncoderLayer, SiglipVisionTransformer, SiglipVisionEmbeddings, SiglipMultiheadAttentionPoolingHead}
vision_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls_vit)
vision_wrap_policy = functools.partial(_or_policy, policies=[vit_wrap_policy, vision_transformer_block_policy])
else:
vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={VisionTransformer, TimmModel})
# vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={VisionTransformer})
# transformer_layer_cls_vit = {ResidualAttentionBlock}
transformer_layer_cls_vit = {ResidualAttentionBlock, Block}
# transformer_layer_cls_vit = {Block}
vision_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls_vit)
vision_wrap_policy = functools.partial(_or_policy, policies=[vit_wrap_policy, vision_transformer_block_policy])
# llm
transformer_layer_cls={LlamaDecoderLayer, PhiDecoderLayer}
if import_phi3:
transformer_layer_cls.add(Phi3DecoderLayer)
llm_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls)
# vision_tokenizer
vis_tokenizer_policy = functools.partial(_module_wrap_policy, module_classes={LinearPatchProjection, PerceiverResampler})
return functools.partial(
_or_policy,
policies = [
vision_wrap_policy,
llm_transformer_block_policy,
vis_tokenizer_policy
])
def group_params_by_weight_decay(self):
"""
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
"""
params_with_wd, params_without_wd = [], []
for n, p in self.named_parameters():
if p.requires_grad:
if "lang_model.model.embed_tokens" in n:
params_without_wd.append(p)
else:
params_with_wd.append(p)
return params_with_wd, params_without_wd
@property
def num_params_per_module(self):
"""Print the number of parameters per module in the model"""
return "\n".join(
[
f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
f"Language model: {num_params(self.lang_model):,} parameters",
]
)
@property
def num_trainable_params_per_module(self):
"""Print the number of trainable parameters per module in the model"""
return "\n".join(
[
f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
]
)
|