Upload 8 files
Browse files- README.md +2 -1
- demo.ipynb +0 -0
- src/__init__.py +0 -0
- src/aki.py +226 -0
- src/aki_generation.py +86 -0
- src/helpers.py +613 -0
- src/utils.py +108 -0
- src/vlm.py +777 -0
README.md
CHANGED
@@ -3,6 +3,7 @@ license: cc-by-nc-4.0
|
|
3 |
language:
|
4 |
- en
|
5 |
pipeline_tag: image-text-to-text
|
|
|
6 |
---
|
7 |
|
8 |
# AKI Model Card
|
@@ -34,7 +35,7 @@ Describe the scene of this image.
|
|
34 |
<|end|>
|
35 |
<|assistant|>
|
36 |
```
|
37 |
-
>
|
38 |
|
39 |
### Inference Example
|
40 |
Please refer to the [notebook](demo.ipynb) for the zero-shot inference.
|
|
|
3 |
language:
|
4 |
- en
|
5 |
pipeline_tag: image-text-to-text
|
6 |
+
arxiv: 2503.02597
|
7 |
---
|
8 |
|
9 |
# AKI Model Card
|
|
|
35 |
<|end|>
|
36 |
<|assistant|>
|
37 |
```
|
38 |
+
> The image captures a beautiful autumn day in a park, with a pathway covered in a vibrant carpet of fallen leaves. The leaves are in various shades of red, orange, yellow, and brown, creating a warm and colorful atmosphere. The path is lined with trees displaying beautiful autumn foliage, adding to the picturesque setting. ...
|
39 |
|
40 |
### Inference Example
|
41 |
Please refer to the [notebook](demo.ipynb) for the zero-shot inference.
|
demo.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
src/__init__.py
ADDED
File without changes
|
src/aki.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from torch import nn
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from huggingface_hub import PyTorchModelHubMixin
|
6 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
7 |
+
|
8 |
+
from .helpers import PerceiverResampler
|
9 |
+
from .vlm import VLMWithLanguageStream
|
10 |
+
|
11 |
+
class AKI(VLMWithLanguageStream, PyTorchModelHubMixin):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vision_encoder_path: str,
|
15 |
+
lang_model_path: str,
|
16 |
+
pad_token_id: int,
|
17 |
+
initial_tokenizer_len: Optional[int] = None,
|
18 |
+
tokenizer: Optional[AutoTokenizer] = None,
|
19 |
+
decoder_layers_attr_name: str = None,
|
20 |
+
gradient_checkpointing: bool = False,
|
21 |
+
base_img_size: Optional[int] = None,
|
22 |
+
num_vision_tokens: int = 144,
|
23 |
+
):
|
24 |
+
"""
|
25 |
+
Args:
|
26 |
+
vision_encoder (nn.Module): HF CLIPModel
|
27 |
+
lang_encoder (nn.Module): HF causal language model
|
28 |
+
vis_feature_dim (int): final dimension of the visual features outputted by the vision_encoder
|
29 |
+
initial_tokenizer_len (int): size of the tokenizer vocab
|
30 |
+
padding_token_id (int): id of the padding token. None if no padding token; then a padding token
|
31 |
+
will be inserted into self.special_tokens, which factory.py fills after creating new tokens
|
32 |
+
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
|
33 |
+
gradient_checkpointing (bool, optional): whether to use gradient checkpointing. Defaults to False.
|
34 |
+
"""
|
35 |
+
|
36 |
+
# load the vision model
|
37 |
+
model = AutoModel.from_pretrained(vision_encoder_path)
|
38 |
+
vision_encoder = model.vision_model
|
39 |
+
vis_feature_dim = vision_encoder.config.hidden_size
|
40 |
+
|
41 |
+
# load the language model
|
42 |
+
lang_model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
lang_model_path,
|
44 |
+
local_files_only=False,
|
45 |
+
trust_remote_code=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
self._special_tokens = {
|
49 |
+
"media_token": "<image>",
|
50 |
+
"end_of_trunk_token": "<|endofchunk|>",
|
51 |
+
}
|
52 |
+
lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
|
53 |
+
super().__init__(
|
54 |
+
vision_encoder=vision_encoder,
|
55 |
+
vision_tokenizer=PerceiverResampler(
|
56 |
+
dim=vis_feature_dim, dim_inner=lang_embedding_dim,
|
57 |
+
num_latents=num_vision_tokens,
|
58 |
+
),
|
59 |
+
lang_model=lang_model,
|
60 |
+
initial_tokenizer_len=initial_tokenizer_len,
|
61 |
+
gradient_checkpointing=gradient_checkpointing,
|
62 |
+
base_img_size=base_img_size,
|
63 |
+
decoder_layers_attr_name=decoder_layers_attr_name,
|
64 |
+
pad_token_id=pad_token_id,
|
65 |
+
)
|
66 |
+
|
67 |
+
if tokenizer is not None:
|
68 |
+
self.lang_model.config.vocab_size = len(tokenizer)
|
69 |
+
self.set_special_token_ids(
|
70 |
+
{
|
71 |
+
v: tokenizer.convert_tokens_to_ids(v)
|
72 |
+
for v in self.special_tokens.values()
|
73 |
+
}
|
74 |
+
)
|
75 |
+
|
76 |
+
def set_trainable(self):
|
77 |
+
"""
|
78 |
+
Unfreeze everything except the vision_encoder
|
79 |
+
"""
|
80 |
+
self.requires_grad_(True)
|
81 |
+
self.vision_encoder.requires_grad_(False)
|
82 |
+
|
83 |
+
def forward(
|
84 |
+
self,
|
85 |
+
vision_x: Optional[torch.Tensor],
|
86 |
+
lang_x: torch.Tensor,
|
87 |
+
attention_mask: Optional[torch.Tensor] = None,
|
88 |
+
labels: Optional[torch.Tensor] = None,
|
89 |
+
past_key_values: Optional[
|
90 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
91 |
+
] = None,
|
92 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
93 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
94 |
+
use_cache: Optional[bool] = False,
|
95 |
+
**kwargs,
|
96 |
+
):
|
97 |
+
"""
|
98 |
+
Args:
|
99 |
+
vision_x: Vision input
|
100 |
+
shape (B, T_img, F, C, H, W) with F=1
|
101 |
+
only F = 1 is supported (single-frame videos)
|
102 |
+
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
|
103 |
+
only the first number of media tokens in lang_x are used
|
104 |
+
lang_x: Language input ids, with media tokens denoting where
|
105 |
+
visual media should be inserted.
|
106 |
+
shape (B, T_txt)
|
107 |
+
attention_mask: Attention mask. Defaults to None.
|
108 |
+
labels: Labels. Defaults to None.
|
109 |
+
shape (B, T_txt)
|
110 |
+
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
|
111 |
+
list of length = number of decoder layers in the LM
|
112 |
+
exact implementation depends on LM, see Hugging Face docs
|
113 |
+
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
|
114 |
+
shape (B, T_txt)
|
115 |
+
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
|
116 |
+
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
|
117 |
+
If True, includes key_values, media_locations, and vision_tokens in the output.
|
118 |
+
"""
|
119 |
+
assert not (past_vision_tokens is None) ^ (
|
120 |
+
past_media_locations is None
|
121 |
+
), "past_vision_tokens and past_media_locations must both be None or both be not None"
|
122 |
+
|
123 |
+
# convert pixels to vision tokens
|
124 |
+
vision_attention_mask = None
|
125 |
+
if vision_x is not None:
|
126 |
+
vision_tokens = self.vision_tokenizer(self._encode_vision_x(vision_x=vision_x))
|
127 |
+
else:
|
128 |
+
vision_tokens = None
|
129 |
+
|
130 |
+
# fuse the vision and language tokens
|
131 |
+
new_inputs = self._prepare_inputs_for_forward(
|
132 |
+
vision_tokens=vision_tokens,
|
133 |
+
lang_x=lang_x,
|
134 |
+
attention_mask=attention_mask,
|
135 |
+
vision_attention_mask=vision_attention_mask,
|
136 |
+
labels=labels,
|
137 |
+
past_key_values=past_key_values,
|
138 |
+
past_media_locations=past_media_locations,
|
139 |
+
padding_side="right",
|
140 |
+
past_vision_tokens=past_vision_tokens,
|
141 |
+
)
|
142 |
+
output = self.lang_model(
|
143 |
+
**new_inputs,
|
144 |
+
use_cache=use_cache,
|
145 |
+
past_key_values=past_key_values,
|
146 |
+
**kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
# postforward hooks
|
150 |
+
self._post_forward_hook()
|
151 |
+
return output
|
152 |
+
|
153 |
+
def generate(
|
154 |
+
self,
|
155 |
+
vision_x: torch.Tensor,
|
156 |
+
lang_x: torch.Tensor,
|
157 |
+
attention_mask: torch.Tensor = None,
|
158 |
+
past_key_values: Optional[
|
159 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
160 |
+
] = None,
|
161 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
162 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
163 |
+
**kwargs,
|
164 |
+
):
|
165 |
+
"""
|
166 |
+
Generate text conditioned on vision and language inputs.
|
167 |
+
Args:
|
168 |
+
vision_x (torch.Tensor): Vision input
|
169 |
+
shape (B, T_img, F, C, H, W)
|
170 |
+
see documentation for forward
|
171 |
+
lang_x (torch.Tensor): Language input
|
172 |
+
shape (B, T_txt)
|
173 |
+
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
|
174 |
+
**kwargs: see generate documentation in Hugging Face CausalLM models.
|
175 |
+
Returns:
|
176 |
+
torch.Tensor: lang_x with generated tokens appended to it
|
177 |
+
"""
|
178 |
+
num_beams = kwargs.pop("num_beams", 1)
|
179 |
+
|
180 |
+
# convert pixels to vision tokens
|
181 |
+
vision_attention_mask = None
|
182 |
+
if vision_x is not None:
|
183 |
+
vision_tokens = self.vision_tokenizer(self._encode_vision_x(vision_x=vision_x))
|
184 |
+
else:
|
185 |
+
vision_tokens = None
|
186 |
+
|
187 |
+
# fuse the vision and language tokens
|
188 |
+
new_inputs = self._prepare_inputs_for_forward(
|
189 |
+
vision_tokens=vision_tokens,
|
190 |
+
lang_x=lang_x,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
vision_attention_mask=vision_attention_mask,
|
193 |
+
past_key_values=past_key_values,
|
194 |
+
past_media_locations=past_media_locations,
|
195 |
+
past_vision_tokens=past_vision_tokens,
|
196 |
+
padding_side="left",
|
197 |
+
num_beams=num_beams,
|
198 |
+
)
|
199 |
+
|
200 |
+
# customize handling of position_ids since attention mask is already formulated as 4D
|
201 |
+
if len(new_inputs["attention_mask"].shape) == 4:
|
202 |
+
position_ids = new_inputs.get("position_ids", None)
|
203 |
+
if position_ids is None:
|
204 |
+
seq_length = new_inputs["inputs_embeds"].shape[1]
|
205 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=new_inputs["inputs_embeds"].device)
|
206 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
207 |
+
new_inputs["position_ids"] = position_ids
|
208 |
+
|
209 |
+
if past_key_values is not None:
|
210 |
+
output = self.lang_model.generate(
|
211 |
+
**new_inputs,
|
212 |
+
past_key_values=past_key_values,
|
213 |
+
num_beams=num_beams,
|
214 |
+
use_cache=True,
|
215 |
+
**kwargs,
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
output = self.lang_model.generate(
|
219 |
+
**new_inputs,
|
220 |
+
num_beams=num_beams,
|
221 |
+
use_cache=True,
|
222 |
+
**kwargs,
|
223 |
+
)
|
224 |
+
self._post_forward_hook()
|
225 |
+
return output
|
226 |
+
|
src/aki_generation.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from transformers.utils import ModelOutput
|
4 |
+
from typing import Any, Dict
|
5 |
+
|
6 |
+
|
7 |
+
def update_causal_attention_mask(attention_mask, cache=False):
|
8 |
+
"""
|
9 |
+
Updates a causal attention mask by expanding it to (n+1, n+1) during generation.
|
10 |
+
|
11 |
+
Parameters:
|
12 |
+
attention_mask (torch.Tensor): Current causal attention mask of shape (1, 1, n, n).
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
torch.Tensor: Updated causal attention mask of shape (1, 1, n+1, n+1).
|
16 |
+
"""
|
17 |
+
# Get the current size `n`
|
18 |
+
_, _, n, _ = attention_mask.shape
|
19 |
+
|
20 |
+
# Create a new row and column with -inf values
|
21 |
+
new_row = torch.full((1, 1, 1, n), 1, device=attention_mask.device)
|
22 |
+
new_col = torch.full((1, 1, n+1, 1), 0, device=attention_mask.device)
|
23 |
+
|
24 |
+
new_col[0, 0, -1, -1] = 1
|
25 |
+
|
26 |
+
# Concatenate the new row and column to the existing mask
|
27 |
+
attention_mask = torch.cat([attention_mask, new_row], dim=2) # Add the new row
|
28 |
+
attention_mask = torch.cat([attention_mask, new_col], dim=3) # Add the new column
|
29 |
+
|
30 |
+
if cache:
|
31 |
+
return attention_mask[:, :, -1:, :]
|
32 |
+
else:
|
33 |
+
return attention_mask
|
34 |
+
|
35 |
+
|
36 |
+
def _aki_update_model_kwargs_for_generation(
|
37 |
+
self,
|
38 |
+
outputs: ModelOutput,
|
39 |
+
model_kwargs: Dict[str, Any],
|
40 |
+
is_encoder_decoder: bool = False,
|
41 |
+
standardize_cache_format: bool = False,
|
42 |
+
num_new_tokens: int = 1,
|
43 |
+
) -> Dict[str, Any]:
|
44 |
+
# update past_key_values
|
45 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
46 |
+
outputs, standardize_cache_format=standardize_cache_format
|
47 |
+
)
|
48 |
+
if getattr(outputs, "state", None) is not None:
|
49 |
+
model_kwargs["state"] = outputs.state
|
50 |
+
|
51 |
+
# update token_type_ids with last value
|
52 |
+
if "token_type_ids" in model_kwargs:
|
53 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
54 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
55 |
+
|
56 |
+
if not is_encoder_decoder:
|
57 |
+
# update attention mask
|
58 |
+
if "attention_mask" in model_kwargs:
|
59 |
+
# modify the update mechanism to incorporate 4D attention mask
|
60 |
+
attention_mask = model_kwargs["attention_mask"]
|
61 |
+
# after the first computation, roll back to the original attention 2D design to fit Huggingface logistics
|
62 |
+
model_kwargs["attention_mask"] = torch.full((1, attention_mask.shape[-1]+1), 1, device=attention_mask.device)
|
63 |
+
else:
|
64 |
+
# update decoder attention mask
|
65 |
+
if "decoder_attention_mask" in model_kwargs:
|
66 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
67 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
68 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
69 |
+
dim=-1,
|
70 |
+
)
|
71 |
+
|
72 |
+
if (
|
73 |
+
model_kwargs.get("use_cache", True)
|
74 |
+
and "cache_position" in model_kwargs
|
75 |
+
and model_kwargs["cache_position"] is not None
|
76 |
+
):
|
77 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
78 |
+
|
79 |
+
# update position_ids and keep only the last one
|
80 |
+
position_ids = torch.arange(model_kwargs["past_key_values"][0][0].shape[2]+1, device=model_kwargs["attention_mask"].device).unsqueeze(0) # +1 for the new token
|
81 |
+
if model_kwargs.get("past_key_values", None) is not None:
|
82 |
+
position_ids = position_ids[:, -1:]
|
83 |
+
|
84 |
+
model_kwargs["position_ids"] = position_ids
|
85 |
+
|
86 |
+
return model_kwargs
|
src/helpers.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Based on: https://github.com/lucidrains/flamingo-pytorch
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
from einops_exts import rearrange_many
|
10 |
+
from torch import einsum, nn
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
12 |
+
from typing import Optional
|
13 |
+
from dataclasses import dataclass
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class VLMOutputWithPast(CausalLMOutputWithPast):
|
18 |
+
"""
|
19 |
+
VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
|
20 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
21 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
22 |
+
"""
|
23 |
+
|
24 |
+
past_media_locations: Optional[torch.Tensor] = None
|
25 |
+
past_vision_tokens: Optional[torch.Tensor] = None
|
26 |
+
|
27 |
+
|
28 |
+
def exists(val):
|
29 |
+
return val is not None
|
30 |
+
|
31 |
+
|
32 |
+
def FeedForward(dim, mult=4):
|
33 |
+
inner_dim = int(dim * mult)
|
34 |
+
return nn.Sequential(
|
35 |
+
nn.LayerNorm(dim),
|
36 |
+
nn.Linear(dim, inner_dim, bias=False),
|
37 |
+
nn.GELU(),
|
38 |
+
nn.Linear(inner_dim, dim, bias=False),
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
class VisionTokenizer(nn.Module):
|
43 |
+
def __init__(self, dim_media, num_tokens_per_media):
|
44 |
+
super().__init__()
|
45 |
+
self.dim_media = dim_media
|
46 |
+
self.num_tokens_per_media = num_tokens_per_media
|
47 |
+
|
48 |
+
|
49 |
+
# MLP (not used in the current implementation)
|
50 |
+
class MLPVisionProjector(VisionTokenizer):
|
51 |
+
def __init__(self, *, dim, dim_inner, num_latents):
|
52 |
+
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
|
53 |
+
self.projector = nn.Sequential(
|
54 |
+
nn.Linear(dim, dim_inner),
|
55 |
+
nn.GELU(),
|
56 |
+
nn.Linear(dim_inner, dim_inner),
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
return self.projector(x)
|
61 |
+
|
62 |
+
class PerceiverAttention(nn.Module):
|
63 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
64 |
+
super().__init__()
|
65 |
+
self.scale = dim_head**-0.5
|
66 |
+
self.heads = heads
|
67 |
+
inner_dim = dim_head * heads
|
68 |
+
|
69 |
+
self.norm_media = nn.LayerNorm(dim)
|
70 |
+
self.norm_latents = nn.LayerNorm(dim)
|
71 |
+
|
72 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
73 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
74 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
75 |
+
|
76 |
+
def forward(self, x, latents):
|
77 |
+
"""
|
78 |
+
Args:
|
79 |
+
x (torch.Tensor): image features
|
80 |
+
shape (b, T, n1, D)
|
81 |
+
latent (torch.Tensor): latent features
|
82 |
+
shape (b, T, n2, D)
|
83 |
+
"""
|
84 |
+
x = self.norm_media(x)
|
85 |
+
latents = self.norm_latents(latents)
|
86 |
+
|
87 |
+
h = self.heads
|
88 |
+
|
89 |
+
q = self.to_q(latents)
|
90 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
91 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
92 |
+
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
|
93 |
+
q = q * self.scale
|
94 |
+
|
95 |
+
# attention
|
96 |
+
sim = einsum("... i d, ... j d -> ... i j", q, k)
|
97 |
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
98 |
+
attn = sim.softmax(dim=-1)
|
99 |
+
|
100 |
+
out = einsum("... i j, ... j d -> ... i d", attn, v)
|
101 |
+
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
|
102 |
+
return self.to_out(out)
|
103 |
+
|
104 |
+
|
105 |
+
class PerceiverResampler(VisionTokenizer):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
*,
|
109 |
+
dim,
|
110 |
+
dim_inner=None,
|
111 |
+
depth=6,
|
112 |
+
dim_head=64,
|
113 |
+
heads=8,
|
114 |
+
num_latents=64,
|
115 |
+
max_num_media=None,
|
116 |
+
max_num_frames=None,
|
117 |
+
ff_mult=4,
|
118 |
+
):
|
119 |
+
"""
|
120 |
+
Perceiver module which takes in image features and outputs image tokens.
|
121 |
+
Args:
|
122 |
+
dim (int): dimension of the incoming image features
|
123 |
+
dim_inner (int, optional): final dimension to project the incoming image features to;
|
124 |
+
also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
|
125 |
+
depth (int, optional): number of layers. Defaults to 6.
|
126 |
+
dim_head (int, optional): dimension of each head. Defaults to 64.
|
127 |
+
heads (int, optional): number of heads. Defaults to 8.
|
128 |
+
num_latents (int, optional): number of latent tokens to use in the Perceiver;
|
129 |
+
also corresponds to number of tokens per sequence to output. Defaults to 64.
|
130 |
+
max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
|
131 |
+
and keep positional embeddings for. If None, no positional embeddings are used.
|
132 |
+
max_num_frames (int, optional): maximum number of frames to input into the Perceiver
|
133 |
+
and keep positional embeddings for. If None, no positional embeddings are used.
|
134 |
+
ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
|
135 |
+
"""
|
136 |
+
if dim_inner is not None:
|
137 |
+
projection = nn.Linear(dim, dim_inner)
|
138 |
+
else:
|
139 |
+
projection = None
|
140 |
+
dim_inner = dim
|
141 |
+
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
|
142 |
+
self.projection = projection
|
143 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
144 |
+
|
145 |
+
# positional embeddings
|
146 |
+
self.frame_embs = (
|
147 |
+
nn.Parameter(torch.randn(max_num_frames, dim))
|
148 |
+
if exists(max_num_frames)
|
149 |
+
else None
|
150 |
+
)
|
151 |
+
self.media_time_embs = (
|
152 |
+
nn.Parameter(torch.randn(max_num_media, 1, dim))
|
153 |
+
if exists(max_num_media)
|
154 |
+
else None
|
155 |
+
)
|
156 |
+
|
157 |
+
self.layers = nn.ModuleList([])
|
158 |
+
for _ in range(depth):
|
159 |
+
self.layers.append(
|
160 |
+
nn.ModuleList(
|
161 |
+
[
|
162 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
163 |
+
FeedForward(dim=dim, mult=ff_mult),
|
164 |
+
]
|
165 |
+
)
|
166 |
+
)
|
167 |
+
|
168 |
+
self.norm = nn.LayerNorm(dim)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
"""
|
172 |
+
Args:
|
173 |
+
x (torch.Tensor): image features
|
174 |
+
shape (b, T, F, v, D)
|
175 |
+
Returns:
|
176 |
+
shape (b, T, n, D) where n is self.num_latents
|
177 |
+
"""
|
178 |
+
b, T, F, v = x.shape[:4]
|
179 |
+
|
180 |
+
# frame and media time embeddings
|
181 |
+
if exists(self.frame_embs):
|
182 |
+
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
|
183 |
+
x = x + frame_embs
|
184 |
+
x = rearrange(
|
185 |
+
x, "b T F v d -> b T (F v) d"
|
186 |
+
) # flatten the frame and spatial dimensions
|
187 |
+
if exists(self.media_time_embs):
|
188 |
+
x = x + self.media_time_embs[:T]
|
189 |
+
|
190 |
+
# blocks
|
191 |
+
latents = repeat(self.latents, "n d -> b T n d", b=b, T=T)
|
192 |
+
for attn, ff in self.layers:
|
193 |
+
latents = attn(x, latents) + latents
|
194 |
+
latents = ff(latents) + latents
|
195 |
+
|
196 |
+
if exists(self.projection):
|
197 |
+
return self.projection(self.norm(latents))
|
198 |
+
else:
|
199 |
+
return self.norm(latents)
|
200 |
+
|
201 |
+
|
202 |
+
# gated cross attention
|
203 |
+
class MaskedCrossAttention(nn.Module):
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
*,
|
207 |
+
dim,
|
208 |
+
dim_visual,
|
209 |
+
dim_head=64,
|
210 |
+
heads=8,
|
211 |
+
only_attend_immediate_media=True,
|
212 |
+
):
|
213 |
+
super().__init__()
|
214 |
+
self.scale = dim_head**-0.5
|
215 |
+
self.heads = heads
|
216 |
+
inner_dim = dim_head * heads
|
217 |
+
|
218 |
+
self.norm = nn.LayerNorm(dim)
|
219 |
+
|
220 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
221 |
+
self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
|
222 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
223 |
+
|
224 |
+
# whether for text to only attend to immediate preceding image, or all previous images
|
225 |
+
self.only_attend_immediate_media = only_attend_immediate_media
|
226 |
+
|
227 |
+
def forward(self, x, media, media_locations=None, use_cached_media=False):
|
228 |
+
"""
|
229 |
+
Args:
|
230 |
+
x (torch.Tensor): text features
|
231 |
+
shape (B, T_txt, D_txt)
|
232 |
+
media (torch.Tensor): image features
|
233 |
+
shape (B, T_img, n, D_img) where n is the dim of the latents
|
234 |
+
media_locations: boolean mask identifying the media tokens in x
|
235 |
+
shape (B, T_txt)
|
236 |
+
use_cached_media: bool
|
237 |
+
If true, treat all of x as if they occur after the last media
|
238 |
+
registered in media_locations. T_txt does not need to exactly
|
239 |
+
equal media_locations.shape[1] in this case
|
240 |
+
"""
|
241 |
+
|
242 |
+
if not use_cached_media:
|
243 |
+
assert (
|
244 |
+
media_locations.shape[1] == x.shape[1]
|
245 |
+
), f"media_location.shape is {media_locations.shape} but x.shape is {x.shape}"
|
246 |
+
|
247 |
+
T_txt = x.shape[1]
|
248 |
+
_, T_img, n = media.shape[:3]
|
249 |
+
h = self.heads
|
250 |
+
|
251 |
+
x = self.norm(x)
|
252 |
+
|
253 |
+
q = self.to_q(x)
|
254 |
+
media = rearrange(media, "b t n d -> b (t n) d")
|
255 |
+
|
256 |
+
k, v = self.to_kv(media).chunk(2, dim=-1)
|
257 |
+
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)
|
258 |
+
|
259 |
+
q = q * self.scale
|
260 |
+
|
261 |
+
sim = einsum("... i d, ... j d -> ... i j", q, k)
|
262 |
+
|
263 |
+
if exists(media_locations):
|
264 |
+
media_time = torch.arange(T_img, device=x.device) + 1
|
265 |
+
|
266 |
+
if use_cached_media:
|
267 |
+
# text time is set to the last cached media location
|
268 |
+
text_time = repeat(
|
269 |
+
torch.count_nonzero(media_locations, dim=1),
|
270 |
+
"b -> b i",
|
271 |
+
i=T_txt,
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
# at each boolean of True, increment the time counter (relative to media time)
|
275 |
+
text_time = media_locations.cumsum(dim=-1)
|
276 |
+
|
277 |
+
# text time must equal media time if only attending to most immediate image
|
278 |
+
# otherwise, as long as text time is greater than media time (if attending to all previous images / media)
|
279 |
+
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge
|
280 |
+
|
281 |
+
text_to_media_mask = mask_op(
|
282 |
+
rearrange(text_time, "b i -> b 1 i 1"),
|
283 |
+
repeat(media_time, "j -> 1 1 1 (j n)", n=n),
|
284 |
+
)
|
285 |
+
sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max)
|
286 |
+
|
287 |
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
288 |
+
attn = sim.softmax(dim=-1)
|
289 |
+
|
290 |
+
if exists(media_locations) and self.only_attend_immediate_media:
|
291 |
+
# any text without a preceding media needs to have attention zeroed out
|
292 |
+
text_without_media_mask = text_time == 0
|
293 |
+
text_without_media_mask = rearrange(
|
294 |
+
text_without_media_mask, "b i -> b 1 i 1"
|
295 |
+
)
|
296 |
+
attn = attn.masked_fill(text_without_media_mask, 0.0)
|
297 |
+
|
298 |
+
out = einsum("... i j, ... j d -> ... i d", attn, v)
|
299 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
300 |
+
return self.to_out(out)
|
301 |
+
|
302 |
+
|
303 |
+
class GatedCrossAttentionBlock(nn.Module):
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
*,
|
307 |
+
dim,
|
308 |
+
dim_visual,
|
309 |
+
dim_head=64,
|
310 |
+
heads=8,
|
311 |
+
ff_mult=4,
|
312 |
+
only_attend_immediate_media=True,
|
313 |
+
):
|
314 |
+
super().__init__()
|
315 |
+
self.attn = MaskedCrossAttention(
|
316 |
+
dim=dim,
|
317 |
+
dim_visual=dim_visual,
|
318 |
+
dim_head=dim_head,
|
319 |
+
heads=heads,
|
320 |
+
only_attend_immediate_media=only_attend_immediate_media,
|
321 |
+
)
|
322 |
+
self.attn_gate = nn.Parameter(torch.tensor([0.0]))
|
323 |
+
|
324 |
+
self.ff = FeedForward(dim, mult=ff_mult)
|
325 |
+
self.ff_gate = nn.Parameter(torch.tensor([0.0]))
|
326 |
+
|
327 |
+
def forward(
|
328 |
+
self,
|
329 |
+
x,
|
330 |
+
media,
|
331 |
+
media_locations=None,
|
332 |
+
use_cached_media=False,
|
333 |
+
):
|
334 |
+
x = (
|
335 |
+
self.attn(
|
336 |
+
x,
|
337 |
+
media,
|
338 |
+
media_locations=media_locations,
|
339 |
+
use_cached_media=use_cached_media,
|
340 |
+
)
|
341 |
+
* self.attn_gate.tanh()
|
342 |
+
+ x
|
343 |
+
)
|
344 |
+
x = self.ff(x) * self.ff_gate.tanh() + x
|
345 |
+
|
346 |
+
return x
|
347 |
+
|
348 |
+
|
349 |
+
# Both DecoupledEmbedding and DecoupledLinear are taken from https://github.com/huggingface/transformers/blob/v4.32.1/src/transformers/models/idefics/modeling_idefics.py and renamed for clarity
|
350 |
+
class DecoupledEmbedding(nn.Embedding):
|
351 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
352 |
+
"""
|
353 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
|
354 |
+
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
|
355 |
+
then it will create `num_additional_embeddings` additional parameters that are always trained. If
|
356 |
+
`num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(
|
360 |
+
self,
|
361 |
+
max_original_id: int,
|
362 |
+
num_additional_embeddings: int = 0,
|
363 |
+
_weight: torch.Tensor = None,
|
364 |
+
num_original_embeddings: int = None,
|
365 |
+
embedding_dim: int = None,
|
366 |
+
partially_freeze=True,
|
367 |
+
device=None,
|
368 |
+
dtype=None,
|
369 |
+
pad_token_id=None,
|
370 |
+
) -> None:
|
371 |
+
"""
|
372 |
+
Args:
|
373 |
+
max_original_id (`int`):
|
374 |
+
The largest token id that should be embedded using the regular embedding (regular `weight`).
|
375 |
+
This is usually len(tokenizer) - 1 before additional tokens are added.
|
376 |
+
Note that this may not equal self.weight.shape[0]
|
377 |
+
num_additional_embeddings (`int`):
|
378 |
+
Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
|
379 |
+
_weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
|
380 |
+
If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
|
381 |
+
num_original_embeddings (`int`):
|
382 |
+
self.weight.shape[0]
|
383 |
+
embedding_dim (`int`):
|
384 |
+
The size of each embedding vector
|
385 |
+
partially_freeze: (`bool`, *optional*, defaults to `True`):
|
386 |
+
If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
|
387 |
+
padding_idx (`int`, *optional*):
|
388 |
+
The padding index (needs to be less than num_embeddings)
|
389 |
+
|
390 |
+
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
|
391 |
+
`max_norm` or `norm_type`. We are not supporting these.
|
392 |
+
"""
|
393 |
+
# validate args
|
394 |
+
if pad_token_id is not None and pad_token_id > max_original_id:
|
395 |
+
raise ValueError(
|
396 |
+
f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
|
397 |
+
+ "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
|
398 |
+
)
|
399 |
+
if _weight is not None:
|
400 |
+
assert (num_original_embeddings is None) or (
|
401 |
+
_weight.shape[0] == num_original_embeddings
|
402 |
+
), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
|
403 |
+
assert (embedding_dim is None) or (
|
404 |
+
_weight.shape[1] == embedding_dim
|
405 |
+
), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
|
406 |
+
num_original_embeddings = _weight.shape[0]
|
407 |
+
embedding_dim = _weight.shape[1]
|
408 |
+
else:
|
409 |
+
assert (
|
410 |
+
num_original_embeddings is not None
|
411 |
+
), "num_original_embeddings must be provided if _weight is not provided"
|
412 |
+
assert (
|
413 |
+
embedding_dim is not None
|
414 |
+
), "embedding_dim must be provided if _weight is not provided"
|
415 |
+
|
416 |
+
super().__init__(
|
417 |
+
num_embeddings=num_original_embeddings,
|
418 |
+
embedding_dim=embedding_dim,
|
419 |
+
device=device,
|
420 |
+
dtype=dtype,
|
421 |
+
padding_idx=pad_token_id,
|
422 |
+
_weight=_weight,
|
423 |
+
)
|
424 |
+
self.max_original_id = max_original_id
|
425 |
+
self.padding_idx = pad_token_id
|
426 |
+
self.num_additional_embeddings = num_additional_embeddings
|
427 |
+
if self.num_additional_embeddings > 0:
|
428 |
+
self.additional_embedding = nn.Embedding(
|
429 |
+
num_embeddings=self.num_additional_embeddings,
|
430 |
+
embedding_dim=embedding_dim,
|
431 |
+
device=device,
|
432 |
+
dtype=dtype,
|
433 |
+
)
|
434 |
+
self.set_requires_grad(
|
435 |
+
require_regular_grad=not partially_freeze, require_additional_grad=True
|
436 |
+
)
|
437 |
+
|
438 |
+
def set_requires_grad(self, require_regular_grad, require_additional_grad):
|
439 |
+
"""
|
440 |
+
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
|
441 |
+
"""
|
442 |
+
self.weight.requires_grad_(require_regular_grad)
|
443 |
+
self.additional_embedding.requires_grad_(require_additional_grad)
|
444 |
+
|
445 |
+
def forward(self, input_ids):
|
446 |
+
"""
|
447 |
+
we have 2 embeddings, with different indices - one pretrained self.weight and another
|
448 |
+
self.additional_embedding.weight that is being trained.
|
449 |
+
|
450 |
+
in order to make a lookup of the input ids, we:
|
451 |
+
1. find out the indices of the entries belonging to the 2nd embedding
|
452 |
+
2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
|
453 |
+
embedding starts from 0 and not num_embeddings
|
454 |
+
3. perform the 2nd embedding lookup
|
455 |
+
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
|
456 |
+
5. perform the 1st embedding lookup
|
457 |
+
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
|
458 |
+
|
459 |
+
note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
|
460 |
+
then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
|
461 |
+
i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
|
462 |
+
usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
|
463 |
+
measure.
|
464 |
+
|
465 |
+
"""
|
466 |
+
if self.num_additional_embeddings == 0:
|
467 |
+
return F.embedding(input_ids, self.weight)
|
468 |
+
|
469 |
+
# Clone so that we don't modify the original input_ids later on
|
470 |
+
input_ids = input_ids.clone()
|
471 |
+
additional_vocab_indices = torch.where(input_ids > self.max_original_id)
|
472 |
+
input_ids_additional_vocab = input_ids[additional_vocab_indices]
|
473 |
+
additional_embeddings = self.additional_embedding(
|
474 |
+
input_ids_additional_vocab - self.max_original_id - 1
|
475 |
+
)
|
476 |
+
|
477 |
+
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
478 |
+
input_ids[additional_vocab_indices] = 0
|
479 |
+
full_vector = F.embedding(input_ids, self.weight)
|
480 |
+
|
481 |
+
# overwrite the records with high indices
|
482 |
+
full_vector[additional_vocab_indices] = additional_embeddings
|
483 |
+
|
484 |
+
return full_vector
|
485 |
+
|
486 |
+
def extra_repr(self) -> str:
|
487 |
+
return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
|
488 |
+
self.max_original_id + 1,
|
489 |
+
self.num_additional_embeddings,
|
490 |
+
self.embedding_dim,
|
491 |
+
(not self.weight.requires_grad),
|
492 |
+
)
|
493 |
+
|
494 |
+
|
495 |
+
class DecoupledLinear(nn.Linear):
|
496 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
|
497 |
+
"""
|
498 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
|
499 |
+
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
|
500 |
+
then it will create `additional_out_features * in_features` additional parameters that are always trained. If
|
501 |
+
`additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
|
502 |
+
"""
|
503 |
+
|
504 |
+
def __init__(
|
505 |
+
self,
|
506 |
+
max_original_id: int,
|
507 |
+
additional_out_features: int = 0,
|
508 |
+
_weight: torch.Tensor = None,
|
509 |
+
_bias: torch.Tensor = None,
|
510 |
+
in_features: int = None,
|
511 |
+
original_out_features: int = None,
|
512 |
+
bias: bool = True,
|
513 |
+
partially_freeze: bool = True,
|
514 |
+
device=None,
|
515 |
+
dtype=None,
|
516 |
+
) -> None:
|
517 |
+
"""
|
518 |
+
Args:
|
519 |
+
max_original_id (`int`): The largest token id that should be extracted from the regular weight.
|
520 |
+
This is usually len(tokenizer) - 1 before additional tokens are added.
|
521 |
+
Note that this may not equal original_out_features - 1
|
522 |
+
_weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
|
523 |
+
If provided, this sets the `in_features` and `original_out_features` parameters.
|
524 |
+
_bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
|
525 |
+
in_features: int. Input hidden size.
|
526 |
+
original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
|
527 |
+
additional_out_features: int. Number of additional trainable dimensions.
|
528 |
+
bias: bool. Whether to include a bias term.
|
529 |
+
partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
|
530 |
+
"""
|
531 |
+
# argument validation
|
532 |
+
if _weight is not None:
|
533 |
+
assert (_weight.shape[0] == original_out_features) or (
|
534 |
+
original_out_features is None
|
535 |
+
), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
|
536 |
+
assert (_weight.shape[1] == in_features) or (
|
537 |
+
in_features is None
|
538 |
+
), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
|
539 |
+
in_features = _weight.shape[1]
|
540 |
+
original_out_features = _weight.shape[0]
|
541 |
+
else:
|
542 |
+
assert (
|
543 |
+
in_features is not None
|
544 |
+
), "in_features must be provided if _weight is not provided"
|
545 |
+
assert (
|
546 |
+
original_out_features is not None
|
547 |
+
), "original_out_features must be provided if _weight is not provided"
|
548 |
+
|
549 |
+
if _bias is not None:
|
550 |
+
assert bias is True, "bias must be True if _bias is provided"
|
551 |
+
|
552 |
+
# initialize original linear
|
553 |
+
super().__init__(
|
554 |
+
in_features,
|
555 |
+
original_out_features,
|
556 |
+
bias,
|
557 |
+
device,
|
558 |
+
dtype)
|
559 |
+
|
560 |
+
# set weight and bias manually
|
561 |
+
if _weight is not None:
|
562 |
+
self.weight = nn.Parameter(_weight)
|
563 |
+
if _bias is not None:
|
564 |
+
self.bias = nn.Parameter(_bias)
|
565 |
+
|
566 |
+
self.in_features = in_features
|
567 |
+
self.original_out_features = original_out_features
|
568 |
+
self.max_original_id = max_original_id
|
569 |
+
|
570 |
+
# initialize additional linear
|
571 |
+
self.additional_out_features = additional_out_features
|
572 |
+
self.has_bias = bias
|
573 |
+
if additional_out_features > 0:
|
574 |
+
self.additional_fc = nn.Linear(
|
575 |
+
in_features=in_features,
|
576 |
+
out_features=additional_out_features,
|
577 |
+
bias=self.has_bias,
|
578 |
+
device=device,
|
579 |
+
dtype=dtype,
|
580 |
+
)
|
581 |
+
self.set_requires_grad(
|
582 |
+
require_regular_grad=not partially_freeze, require_additional_grad=True
|
583 |
+
)
|
584 |
+
|
585 |
+
def set_requires_grad(self, require_regular_grad, require_additional_grad):
|
586 |
+
"""
|
587 |
+
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
|
588 |
+
"""
|
589 |
+
self.weight.requires_grad_(require_regular_grad)
|
590 |
+
if self.has_bias:
|
591 |
+
self.bias.requires_grad_(require_regular_grad)
|
592 |
+
self.additional_fc.requires_grad_(require_additional_grad)
|
593 |
+
|
594 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
595 |
+
output = F.linear(input, self.weight, self.bias)
|
596 |
+
output = output[..., : self.max_original_id + 1]
|
597 |
+
|
598 |
+
if self.additional_out_features > 0:
|
599 |
+
additional_features = F.linear(
|
600 |
+
input, self.additional_fc.weight, self.additional_fc.bias
|
601 |
+
)
|
602 |
+
output = torch.cat((output, additional_features), -1)
|
603 |
+
return output
|
604 |
+
|
605 |
+
def extra_repr(self) -> str:
|
606 |
+
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
|
607 |
+
return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
|
608 |
+
self.in_features,
|
609 |
+
self.max_original_id + 1,
|
610 |
+
self.additional_out_features,
|
611 |
+
self.bias is not None,
|
612 |
+
(not self.weight.requires_grad or not self.bias.requires_grad),
|
613 |
+
)
|
src/utils.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def extend_instance(obj, mixin):
|
5 |
+
"""Apply mixins to a class instance after creation"""
|
6 |
+
base_cls = obj.__class__
|
7 |
+
base_cls_name = obj.__class__.__name__
|
8 |
+
obj.__class__ = type(
|
9 |
+
base_cls_name, (mixin, base_cls), {}
|
10 |
+
) # mixin needs to go first for our forward() logic to work
|
11 |
+
|
12 |
+
|
13 |
+
def getattr_recursive(obj, att):
|
14 |
+
"""
|
15 |
+
Return nested attribute of obj
|
16 |
+
Example: getattr_recursive(obj, 'a.b.c') is equivalent to obj.a.b.c
|
17 |
+
"""
|
18 |
+
if att == "":
|
19 |
+
return obj
|
20 |
+
i = att.find(".")
|
21 |
+
if i < 0:
|
22 |
+
return getattr(obj, att)
|
23 |
+
else:
|
24 |
+
return getattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
|
25 |
+
|
26 |
+
|
27 |
+
def setattr_recursive(obj, att, val):
|
28 |
+
"""
|
29 |
+
Set nested attribute of obj
|
30 |
+
Example: setattr_recursive(obj, 'a.b.c', val) is equivalent to obj.a.b.c = val
|
31 |
+
"""
|
32 |
+
if "." in att:
|
33 |
+
obj = getattr_recursive(obj, ".".join(att.split(".")[:-1]))
|
34 |
+
setattr(obj, att.split(".")[-1], val)
|
35 |
+
|
36 |
+
|
37 |
+
def apply_with_stopping_condition(
|
38 |
+
module, apply_fn, apply_condition=None, stopping_condition=None, **other_args
|
39 |
+
):
|
40 |
+
if stopping_condition(module):
|
41 |
+
return
|
42 |
+
if apply_condition(module):
|
43 |
+
apply_fn(module, **other_args)
|
44 |
+
for child in module.children():
|
45 |
+
apply_with_stopping_condition(
|
46 |
+
child,
|
47 |
+
apply_fn,
|
48 |
+
apply_condition=apply_condition,
|
49 |
+
stopping_condition=stopping_condition,
|
50 |
+
**other_args
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def num_params(module, filter_to_trainable=False):
|
55 |
+
"""Returns the number of parameters in the module, or optionally only the trainable parameters"""
|
56 |
+
if filter_to_trainable:
|
57 |
+
return sum(p.numel() for p in module.parameters() if p.requires_grad)
|
58 |
+
else:
|
59 |
+
return sum(p.numel() for p in module.parameters())
|
60 |
+
|
61 |
+
|
62 |
+
def stack_with_padding(list_of_tensors, padding_value=0, padding_side="right"):
|
63 |
+
"""
|
64 |
+
Stack a list of tensors with padding on one side
|
65 |
+
Args:
|
66 |
+
list_of_tensors (list[torch.Tensor]): List of tensors to stack
|
67 |
+
padding_value (int, optional): Value to pad with. Defaults to 0.
|
68 |
+
padding_side (str, optional): Side to pad on. Defaults to "right".
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Stacked tensors
|
71 |
+
"""
|
72 |
+
max_tokens = max(tensor.size(0) for tensor in list_of_tensors)
|
73 |
+
padded_tensors = []
|
74 |
+
for tensor in list_of_tensors:
|
75 |
+
num_tokens = tensor.size(0)
|
76 |
+
if len(tensor.size()) == 1:
|
77 |
+
padding = torch.full(
|
78 |
+
(max_tokens - num_tokens,),
|
79 |
+
padding_value,
|
80 |
+
dtype=tensor.dtype,
|
81 |
+
device=tensor.device,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
padding = torch.full(
|
85 |
+
(max_tokens - num_tokens, tensor.size(1)),
|
86 |
+
padding_value,
|
87 |
+
dtype=tensor.dtype,
|
88 |
+
device=tensor.device,
|
89 |
+
)
|
90 |
+
padded_tensor = (
|
91 |
+
torch.cat((tensor, padding), dim=0)
|
92 |
+
if padding_side == "right"
|
93 |
+
else torch.cat((padding, tensor), dim=0)
|
94 |
+
)
|
95 |
+
padded_tensors.append(padded_tensor)
|
96 |
+
return torch.stack(padded_tensors)
|
97 |
+
|
98 |
+
|
99 |
+
def stack_with_padding_2D_attention(list_of_tensors):
|
100 |
+
max_size = max(tensor.size(1) for tensor in list_of_tensors)
|
101 |
+
# Initialize a padded tensor of zeros with the target shape
|
102 |
+
padded_tensors = []
|
103 |
+
for tensor in list_of_tensors:
|
104 |
+
a = tensor.shape[-1]
|
105 |
+
padding = (0, max_size - a, 0, max_size - a) # (left, right, top, bottom)
|
106 |
+
padded_tensor = torch.nn.functional.pad(tensor, padding)
|
107 |
+
padded_tensors.append(padded_tensor)
|
108 |
+
return torch.stack(padded_tensors)
|
src/vlm.py
ADDED
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from torch import nn
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from .utils import extend_instance, stack_with_padding, stack_with_padding_2D_attention, num_params, getattr_recursive
|
6 |
+
from .helpers import DecoupledEmbedding, DecoupledLinear, VLMOutputWithPast
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
8 |
+
from transformers import CLIPVisionModel
|
9 |
+
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer
|
10 |
+
|
11 |
+
|
12 |
+
class VLM(nn.Module):
|
13 |
+
"""
|
14 |
+
Generic vision-language model (VLM) class.
|
15 |
+
A VLM consists of four components:
|
16 |
+
1. A vision encoder that extracts features from pixels, e.g. CLIP
|
17 |
+
input: (B, T_img, F, C, H, W)
|
18 |
+
output: (B, T_img, F, v, d)
|
19 |
+
2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
|
20 |
+
input: (B, T_img, F, v, d)
|
21 |
+
output: (B, T_img, n, d)
|
22 |
+
3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
|
23 |
+
4. A language model
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
vision_encoder: nn.Module,
|
29 |
+
vision_tokenizer: nn.Module,
|
30 |
+
lang_model: nn.Module,
|
31 |
+
initial_tokenizer_len: int,
|
32 |
+
pad_token_id: int,
|
33 |
+
gradient_checkpointing: bool = False,
|
34 |
+
base_img_size: Optional[int] = None,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
vision_encoder (nn.Module): e.g. CLIP
|
39 |
+
vision_tokenizer (nn.Module): e.g. PerceiverResampler
|
40 |
+
lang_model (nn.Module): e.g. MPT
|
41 |
+
initial_tokenizer_len (int): size of the original tokenizer vocab
|
42 |
+
pad_token_id (int): id of the pad token
|
43 |
+
gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
|
44 |
+
"""
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
# save dimension information
|
48 |
+
self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
|
49 |
+
if hasattr(lang_model.config, "d_model"):
|
50 |
+
self.lang_hidden_dim = lang_model.config.d_model # mpt uses d_model
|
51 |
+
else:
|
52 |
+
self.lang_hidden_dim = lang_model.config.hidden_size
|
53 |
+
self.vis_embedding_dim = vision_tokenizer.dim_media
|
54 |
+
self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media
|
55 |
+
|
56 |
+
# core components
|
57 |
+
self.vision_encoder = vision_encoder
|
58 |
+
self.vision_tokenizer = vision_tokenizer
|
59 |
+
self.lang_model = lang_model
|
60 |
+
|
61 |
+
if base_img_size is None:
|
62 |
+
if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(self.vision_encoder, SiglipVisionTransformer):
|
63 |
+
base_img_size = self.vision_encoder.config.image_size
|
64 |
+
else:
|
65 |
+
base_img_size = self.vision_encoder.image_size[0]
|
66 |
+
self.base_img_size = base_img_size
|
67 |
+
|
68 |
+
# lm embeddings
|
69 |
+
self.pad_token_id = pad_token_id
|
70 |
+
self.initial_tokenizer_len = initial_tokenizer_len
|
71 |
+
input_embeds = DecoupledEmbedding(
|
72 |
+
max_original_id=initial_tokenizer_len - 1,
|
73 |
+
num_additional_embeddings=len(self.special_tokens),
|
74 |
+
_weight=self.lang_model.get_input_embeddings().weight,
|
75 |
+
pad_token_id=self.pad_token_id,
|
76 |
+
)
|
77 |
+
if hasattr(input_embeds, "additional_embedding"):
|
78 |
+
input_embeds.additional_embedding.weight.data.normal_(
|
79 |
+
mean=0.0,
|
80 |
+
std=self.lang_model.config.initializer_range
|
81 |
+
if hasattr(self.lang_model.config, "initializer_range")
|
82 |
+
else 0.02,
|
83 |
+
)
|
84 |
+
self.lang_model.set_input_embeddings(input_embeds)
|
85 |
+
|
86 |
+
out_embeds = DecoupledLinear(
|
87 |
+
max_original_id=initial_tokenizer_len - 1,
|
88 |
+
additional_out_features=len(self.special_tokens),
|
89 |
+
_weight=self.lang_model.get_output_embeddings().weight,
|
90 |
+
_bias=self.lang_model.get_output_embeddings().bias if hasattr(self.lang_model.get_output_embeddings(), "bias") else None,
|
91 |
+
)
|
92 |
+
if hasattr(out_embeds, "additional_fc"):
|
93 |
+
out_embeds.additional_fc.weight.data.normal_(
|
94 |
+
mean=0.0,
|
95 |
+
std=self.lang_model.config.initializer_range
|
96 |
+
if hasattr(self.lang_model.config, "initializer_range")
|
97 |
+
else 0.02,
|
98 |
+
)
|
99 |
+
self.lang_model.set_output_embeddings(out_embeds)
|
100 |
+
|
101 |
+
# gradient checkpointing
|
102 |
+
self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self,
|
106 |
+
vision_x: Optional[torch.Tensor],
|
107 |
+
lang_x: torch.Tensor,
|
108 |
+
attention_mask: Optional[torch.Tensor] = None,
|
109 |
+
labels: Optional[torch.Tensor] = None,
|
110 |
+
past_key_values: Optional[
|
111 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
112 |
+
] = None,
|
113 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
114 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
115 |
+
use_cache: Optional[bool] = False,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
"""
|
119 |
+
Args:
|
120 |
+
vision_x: Vision input
|
121 |
+
shape (B, T_img, F, C, H, W) with F=1
|
122 |
+
only F = 1 is supported (single-frame videos)
|
123 |
+
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
|
124 |
+
only the first number of media tokens in lang_x are used
|
125 |
+
lang_x: Language input ids, with media tokens denoting where
|
126 |
+
visual media should be inserted.
|
127 |
+
shape (B, T_txt)
|
128 |
+
attention_mask: Attention mask. Defaults to None.
|
129 |
+
labels: Labels. Defaults to None.
|
130 |
+
shape (B, T_txt)
|
131 |
+
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
|
132 |
+
list of length = number of decoder layers in the LM
|
133 |
+
exact implementation depends on LM, see Hugging Face docs
|
134 |
+
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
|
135 |
+
shape (B, T_txt)
|
136 |
+
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
|
137 |
+
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
|
138 |
+
If True, includes key_values, media_locations, and vision_tokens in the output.
|
139 |
+
"""
|
140 |
+
assert not (past_vision_tokens is None) ^ (
|
141 |
+
past_media_locations is None
|
142 |
+
), "past_vision_tokens and past_media_locations must both be None or both be not None"
|
143 |
+
|
144 |
+
# convert pixels to vision tokens
|
145 |
+
if vision_x is not None:
|
146 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
147 |
+
vision_tokens = self.vision_tokenizer(vision_features)
|
148 |
+
else:
|
149 |
+
vision_tokens = None
|
150 |
+
|
151 |
+
# fuse the vision and language tokens
|
152 |
+
new_inputs = self._prepare_inputs_for_forward(
|
153 |
+
vision_tokens=vision_tokens,
|
154 |
+
lang_x=lang_x,
|
155 |
+
attention_mask=attention_mask,
|
156 |
+
labels=labels,
|
157 |
+
past_key_values=past_key_values,
|
158 |
+
past_media_locations=past_media_locations,
|
159 |
+
padding_side="right",
|
160 |
+
past_vision_tokens=past_vision_tokens,
|
161 |
+
)
|
162 |
+
output = self.lang_model(
|
163 |
+
**new_inputs,
|
164 |
+
use_cache=use_cache,
|
165 |
+
past_key_values=past_key_values,
|
166 |
+
**kwargs,
|
167 |
+
)
|
168 |
+
|
169 |
+
# postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
|
170 |
+
# or to add the past_vision_tokens and past_media_locations to the output
|
171 |
+
output = self._postprocess_outputs_from_forward(
|
172 |
+
output=output,
|
173 |
+
lang_x=lang_x,
|
174 |
+
vision_tokens=vision_tokens,
|
175 |
+
use_cache=use_cache,
|
176 |
+
past_vision_tokens=past_vision_tokens,
|
177 |
+
past_media_locations=past_media_locations,
|
178 |
+
)
|
179 |
+
|
180 |
+
# postforward hooks
|
181 |
+
self._post_forward_hook()
|
182 |
+
return output
|
183 |
+
|
184 |
+
def _encode_vision_x(self, vision_x: torch.Tensor):
|
185 |
+
"""
|
186 |
+
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
|
187 |
+
Args:
|
188 |
+
vision_x: Vision input
|
189 |
+
shape (B, T_img, F, C, H, W)
|
190 |
+
Images in the same chunk are collated along T_img, and frames are collated along F
|
191 |
+
Currently only F=1 is supported (single-frame videos)
|
192 |
+
|
193 |
+
rearrange code based on https://github.com/dhansmair/flamingo-mini
|
194 |
+
"""
|
195 |
+
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
|
196 |
+
b, T, F = vision_x.shape[:3]
|
197 |
+
|
198 |
+
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
|
199 |
+
with torch.no_grad():
|
200 |
+
if self.vision_encoder.__class__.__name__ == "TimmModel":
|
201 |
+
vision_x = self.vision_encoder.trunk.forward_features(vision_x)
|
202 |
+
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
|
203 |
+
vision_x = self.vision_encoder(vision_x).last_hidden_state
|
204 |
+
else:
|
205 |
+
vision_x = self.vision_encoder(vision_x)[1] # OpenCLIP returns tuples
|
206 |
+
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
|
207 |
+
return vision_x
|
208 |
+
|
209 |
+
def _concat_vision_cache(
|
210 |
+
self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
|
211 |
+
):
|
212 |
+
"""
|
213 |
+
Helper function to include the past vision tokens and past media locations in the output.
|
214 |
+
"""
|
215 |
+
if use_cache:
|
216 |
+
if past_media_locations is not None and past_vision_tokens is not None:
|
217 |
+
if vision_tokens is not None:
|
218 |
+
updated_vision_tokens = torch.cat(
|
219 |
+
[
|
220 |
+
past_vision_tokens,
|
221 |
+
vision_tokens,
|
222 |
+
],
|
223 |
+
dim=1,
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
updated_vision_tokens = past_vision_tokens
|
227 |
+
updated_media_locations = torch.cat(
|
228 |
+
[
|
229 |
+
past_media_locations,
|
230 |
+
lang_x == self.media_token_id,
|
231 |
+
],
|
232 |
+
dim=1,
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
updated_vision_tokens = vision_tokens
|
236 |
+
updated_media_locations = lang_x == self.media_token_id
|
237 |
+
|
238 |
+
else:
|
239 |
+
updated_vision_tokens = None
|
240 |
+
updated_media_locations = None
|
241 |
+
|
242 |
+
return updated_vision_tokens, updated_media_locations
|
243 |
+
|
244 |
+
def generate(
|
245 |
+
self,
|
246 |
+
vision_x: torch.Tensor,
|
247 |
+
lang_x: torch.Tensor,
|
248 |
+
attention_mask: torch.Tensor = None,
|
249 |
+
past_key_values: Optional[
|
250 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
251 |
+
] = None,
|
252 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
253 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
254 |
+
**kwargs,
|
255 |
+
):
|
256 |
+
"""
|
257 |
+
Generate text conditioned on vision and language inputs.
|
258 |
+
Args:
|
259 |
+
vision_x (torch.Tensor): Vision input
|
260 |
+
shape (B, T_img, F, C, H, W)
|
261 |
+
see documentation for forward
|
262 |
+
lang_x (torch.Tensor): Language input
|
263 |
+
shape (B, T_txt)
|
264 |
+
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
|
265 |
+
**kwargs: see generate documentation in Hugging Face CausalLM models.
|
266 |
+
Returns:
|
267 |
+
torch.Tensor: lang_x with generated tokens appended to it
|
268 |
+
"""
|
269 |
+
num_beams = kwargs.pop("num_beams", 1)
|
270 |
+
|
271 |
+
# convert pixels to vision tokens
|
272 |
+
if vision_x is not None:
|
273 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
274 |
+
vision_tokens = self.vision_tokenizer(vision_features)
|
275 |
+
else:
|
276 |
+
vision_tokens = None
|
277 |
+
|
278 |
+
# fuse the vision and language tokens
|
279 |
+
# for xattn, vision_x and media_location are repeat_interleaved s.t.
|
280 |
+
# the total batch size is B * num_beams
|
281 |
+
new_inputs = self._prepare_inputs_for_forward(
|
282 |
+
vision_tokens=vision_tokens,
|
283 |
+
lang_x=lang_x,
|
284 |
+
attention_mask=attention_mask,
|
285 |
+
past_key_values=past_key_values,
|
286 |
+
past_media_locations=past_media_locations,
|
287 |
+
past_vision_tokens=past_vision_tokens,
|
288 |
+
padding_side="left",
|
289 |
+
num_beams=num_beams,
|
290 |
+
)
|
291 |
+
output = self.lang_model.generate(
|
292 |
+
**new_inputs,
|
293 |
+
past_key_values=past_key_values,
|
294 |
+
num_beams=num_beams,
|
295 |
+
use_cache=True,
|
296 |
+
**kwargs,
|
297 |
+
)
|
298 |
+
self._post_forward_hook()
|
299 |
+
return output
|
300 |
+
|
301 |
+
@property
|
302 |
+
def num_trainable_params(self):
|
303 |
+
"""Print the number of trainable parameters"""
|
304 |
+
return num_params(self, filter_to_trainable=True)
|
305 |
+
|
306 |
+
def set_trainable(self):
|
307 |
+
"""
|
308 |
+
Freeze appropriate parameters in the model.
|
309 |
+
"""
|
310 |
+
raise NotImplementedError
|
311 |
+
|
312 |
+
def group_params_by_weight_decay(self):
|
313 |
+
"""
|
314 |
+
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
|
315 |
+
"""
|
316 |
+
params_with_wd, params_without_wd = [], []
|
317 |
+
for n, p in self.named_parameters():
|
318 |
+
if p.requires_grad:
|
319 |
+
if self._should_apply_weight_decay(n):
|
320 |
+
params_with_wd.append(p)
|
321 |
+
else:
|
322 |
+
params_without_wd.append(p)
|
323 |
+
return params_with_wd, params_without_wd
|
324 |
+
|
325 |
+
def _should_apply_weight_decay(self, parameter_name):
|
326 |
+
"""
|
327 |
+
Return whether weight decay should be applied to a parameter.
|
328 |
+
"""
|
329 |
+
raise NotImplementedError
|
330 |
+
|
331 |
+
@property
|
332 |
+
def special_tokens(self):
|
333 |
+
"""
|
334 |
+
Returns a dict mapping from the attribute name of a special token to its string format,
|
335 |
+
e.g. "media_token": "<image>"
|
336 |
+
"""
|
337 |
+
assert (
|
338 |
+
"media_token" in self._special_tokens
|
339 |
+
), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
|
340 |
+
return self._special_tokens
|
341 |
+
|
342 |
+
@property
|
343 |
+
def special_token_ids(self):
|
344 |
+
"""
|
345 |
+
Returns a list of the special token ids
|
346 |
+
"""
|
347 |
+
return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]
|
348 |
+
|
349 |
+
def set_special_token_ids(self, string_to_ids):
|
350 |
+
"""
|
351 |
+
Args:
|
352 |
+
string_to_ids (dict): mapping from token string to id
|
353 |
+
"""
|
354 |
+
assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
|
355 |
+
for att_name, token_str in self.special_tokens.items():
|
356 |
+
token_id = string_to_ids[token_str]
|
357 |
+
setattr(self, f"{att_name}_id", token_id)
|
358 |
+
setattr(self.lang_model, f"{att_name}_id", token_id)
|
359 |
+
|
360 |
+
def init_gradient_checkpointing(self):
|
361 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
362 |
+
checkpoint_wrapper,
|
363 |
+
CheckpointWrapper,
|
364 |
+
CheckpointImpl,
|
365 |
+
apply_activation_checkpointing,
|
366 |
+
)
|
367 |
+
from functools import partial
|
368 |
+
|
369 |
+
non_reentrant_wrapper = partial(
|
370 |
+
checkpoint_wrapper,
|
371 |
+
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
|
372 |
+
)
|
373 |
+
apply_activation_checkpointing(
|
374 |
+
self,
|
375 |
+
checkpoint_wrapper_fn=non_reentrant_wrapper,
|
376 |
+
check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
|
377 |
+
and not isinstance(m, CheckpointWrapper),
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
class VLMWithLanguageStream(VLM):
|
382 |
+
"""
|
383 |
+
VLM that fuses modalities by inserting vision tokens directly into the language stream.
|
384 |
+
"""
|
385 |
+
|
386 |
+
def __init__(
|
387 |
+
self,
|
388 |
+
vision_encoder: nn.Module,
|
389 |
+
vision_tokenizer: nn.Module,
|
390 |
+
lang_model: nn.Module,
|
391 |
+
initial_tokenizer_len: int,
|
392 |
+
pad_token_id: int,
|
393 |
+
decoder_layers_attr_name: str = None,
|
394 |
+
gradient_checkpointing: bool = False,
|
395 |
+
base_img_size: Optional[int] = None,
|
396 |
+
):
|
397 |
+
super().__init__(
|
398 |
+
vision_encoder=vision_encoder,
|
399 |
+
vision_tokenizer=vision_tokenizer,
|
400 |
+
lang_model=lang_model,
|
401 |
+
initial_tokenizer_len=initial_tokenizer_len,
|
402 |
+
pad_token_id=pad_token_id,
|
403 |
+
base_img_size=base_img_size,
|
404 |
+
gradient_checkpointing=gradient_checkpointing,
|
405 |
+
)
|
406 |
+
self.decoder_layers_attr_name = decoder_layers_attr_name
|
407 |
+
for block in getattr_recursive(self.lang_model, self.decoder_layers_attr_name):
|
408 |
+
block._use_gradient_checkpointing = gradient_checkpointing
|
409 |
+
|
410 |
+
@staticmethod
|
411 |
+
def _make_modality_mutual_mask(
|
412 |
+
attention_mask_2d: torch.Tensor,
|
413 |
+
image_start_idx: int,
|
414 |
+
text_start_idx: int,
|
415 |
+
text_end_idx: int, # the end of the question in the SFT stage
|
416 |
+
input_ids_shape: torch.Size,
|
417 |
+
dtype: torch.dtype,
|
418 |
+
device: torch.device,
|
419 |
+
):
|
420 |
+
"""
|
421 |
+
Make non-causal mask between modalities.
|
422 |
+
"""
|
423 |
+
tgt_len = input_ids_shape[0]
|
424 |
+
mask = torch.full((tgt_len, tgt_len), 0, device=device)
|
425 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
426 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 1)
|
427 |
+
|
428 |
+
# enable vision tokens to attend to text tokens
|
429 |
+
mask[image_start_idx:text_start_idx, text_start_idx:text_end_idx] = 1
|
430 |
+
|
431 |
+
mask = mask.to(dtype)
|
432 |
+
mask = mask[None, :, :].expand(1, tgt_len, tgt_len)
|
433 |
+
|
434 |
+
expanded_mask = attention_mask_2d[None, None, :].expand(1, tgt_len, tgt_len).to(torch.float32)
|
435 |
+
inverted_mask = 1.0 - expanded_mask
|
436 |
+
expanded_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(torch.float32).min)
|
437 |
+
|
438 |
+
expanded_attn_mask = mask.masked_fill(expanded_attn_mask.bool(), 0)
|
439 |
+
|
440 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
441 |
+
expanded_4d_mask = expanded_attn_mask
|
442 |
+
|
443 |
+
return expanded_4d_mask
|
444 |
+
|
445 |
+
def _prepare_inputs_for_forward(
|
446 |
+
self,
|
447 |
+
vision_tokens: torch.Tensor,
|
448 |
+
lang_x: torch.Tensor,
|
449 |
+
attention_mask: torch.Tensor,
|
450 |
+
labels: torch.Tensor = None,
|
451 |
+
past_key_values=None,
|
452 |
+
vision_attention_mask: Optional[torch.Tensor] = None,
|
453 |
+
past_media_locations: torch.Tensor = None,
|
454 |
+
past_vision_tokens: torch.Tensor = None,
|
455 |
+
padding_side: str = "left",
|
456 |
+
num_beams: int = 1,
|
457 |
+
):
|
458 |
+
"""
|
459 |
+
Insert the vision tokens directly into the language stream/
|
460 |
+
This requires us to modify the input_ids, attention_mask, and labels.
|
461 |
+
[NOTE]: This function can be changed to fit the ablation setting of putting text before images.
|
462 |
+
"""
|
463 |
+
if past_key_values is not None:
|
464 |
+
past_len = past_key_values[0][0].shape[2]
|
465 |
+
assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
|
466 |
+
"Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
|
467 |
+
+ "Check that you've expanded the attention mask to account for past image tokens."
|
468 |
+
)
|
469 |
+
|
470 |
+
if vision_tokens is None:
|
471 |
+
return {
|
472 |
+
"input_ids": lang_x,
|
473 |
+
"attention_mask": attention_mask,
|
474 |
+
"labels": labels,
|
475 |
+
}
|
476 |
+
|
477 |
+
# get the language embeddings
|
478 |
+
lang_embeds = self.lang_model.get_input_embeddings()(lang_x)
|
479 |
+
|
480 |
+
# build up the multimodal embeddings
|
481 |
+
B = lang_x.shape[0]
|
482 |
+
has_labels = labels is not None
|
483 |
+
multimodal_embeds = []
|
484 |
+
multimodal_attention_mask = []
|
485 |
+
multimodal_labels = [] if has_labels else None
|
486 |
+
for i in range(B):
|
487 |
+
# get index of <image> tokens in lang_x[i]
|
488 |
+
image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]
|
489 |
+
|
490 |
+
# get the <|assistant|> token index, hardcode for now but can easily get from tokenizer's special tokens
|
491 |
+
# assume only one <|assistant|> token, i.e., single-turn
|
492 |
+
question_token_idx = torch.where(lang_x[i] == 32001)[0]
|
493 |
+
if len(question_token_idx) != 0:
|
494 |
+
question_token_idx = question_token_idx[0]
|
495 |
+
else:
|
496 |
+
question_token_idx = 0
|
497 |
+
|
498 |
+
if len(image_token_idxs) == 0:
|
499 |
+
multimodal_embeds.append(lang_embeds[i].clone())
|
500 |
+
new_attention_mask = self._make_modality_mutual_mask(
|
501 |
+
attention_mask_2d=attention_mask[i].clone(),
|
502 |
+
image_start_idx=0,
|
503 |
+
text_start_idx=0,
|
504 |
+
text_end_idx=question_token_idx,
|
505 |
+
input_ids_shape=attention_mask[i].shape,
|
506 |
+
dtype=attention_mask[i].dtype,
|
507 |
+
device=attention_mask[i].device,
|
508 |
+
)
|
509 |
+
multimodal_attention_mask.append(new_attention_mask)
|
510 |
+
if has_labels:
|
511 |
+
multimodal_labels.append(labels[i].clone())
|
512 |
+
continue
|
513 |
+
|
514 |
+
# since an image is represented by self.num_tokens_per_vis tokens, we need to offset the image_token_idxs
|
515 |
+
# loop through the image_token_idxs and insert the vision tokens
|
516 |
+
new_embed = lang_embeds[i].clone()
|
517 |
+
new_attention_mask = (
|
518 |
+
attention_mask[i].clone() if attention_mask is not None else None
|
519 |
+
)
|
520 |
+
if has_labels:
|
521 |
+
new_label = labels[i].clone()
|
522 |
+
|
523 |
+
for img_num in range(len(image_token_idxs)):
|
524 |
+
img_idx = image_token_idxs[img_num]
|
525 |
+
assert (
|
526 |
+
vision_tokens[i][img_num].shape[0] == self.num_tokens_per_vis
|
527 |
+
), f"vision token number mismatch: image embedding ({vision_tokens[i][img_num].shape[0]}) \
|
528 |
+
vs. model.num_tokens_per_vis ({self.num_tokens_per_vis})"
|
529 |
+
# By default, vision tokens are not padded.
|
530 |
+
num_vis_tokens = self.num_tokens_per_vis
|
531 |
+
vis_attention_mask = torch.ones(
|
532 |
+
num_vis_tokens, dtype=torch.long
|
533 |
+
).to(attention_mask.device)
|
534 |
+
|
535 |
+
# Offset the rest of image tokens with current num_vis_tokens
|
536 |
+
for j in range(img_num+1, len(image_token_idxs)):
|
537 |
+
image_token_idxs[j] += num_vis_tokens
|
538 |
+
|
539 |
+
new_embed = torch.cat(
|
540 |
+
(
|
541 |
+
new_embed[:img_idx],
|
542 |
+
vision_tokens[i][img_num],
|
543 |
+
new_embed[img_idx + 1 :],
|
544 |
+
),
|
545 |
+
dim=0,
|
546 |
+
)
|
547 |
+
new_attention_mask = torch.cat(
|
548 |
+
(
|
549 |
+
new_attention_mask[:img_idx],
|
550 |
+
vis_attention_mask,
|
551 |
+
new_attention_mask[img_idx + 1 :],
|
552 |
+
),
|
553 |
+
dim=0,
|
554 |
+
)
|
555 |
+
|
556 |
+
new_attention_mask = self._make_modality_mutual_mask(
|
557 |
+
attention_mask_2d=new_attention_mask,
|
558 |
+
image_start_idx=img_idx,
|
559 |
+
text_start_idx=img_idx+len(vis_attention_mask), # 1+128 -> start position of text
|
560 |
+
text_end_idx=question_token_idx+len(vis_attention_mask),
|
561 |
+
input_ids_shape=new_attention_mask.shape, # (252)
|
562 |
+
dtype=new_attention_mask.dtype,
|
563 |
+
device=new_attention_mask.device,
|
564 |
+
)
|
565 |
+
|
566 |
+
if has_labels:
|
567 |
+
new_label = torch.cat(
|
568 |
+
(
|
569 |
+
new_label[:img_idx],
|
570 |
+
torch.ones(num_vis_tokens, dtype=torch.long).to(
|
571 |
+
labels.device
|
572 |
+
)
|
573 |
+
* -100,
|
574 |
+
new_label[img_idx + 1 :],
|
575 |
+
),
|
576 |
+
dim=0,
|
577 |
+
)
|
578 |
+
multimodal_embeds.append(new_embed)
|
579 |
+
multimodal_attention_mask.append(new_attention_mask)
|
580 |
+
if has_labels:
|
581 |
+
multimodal_labels.append(new_label)
|
582 |
+
|
583 |
+
# stack
|
584 |
+
multimodal_embeds = stack_with_padding(
|
585 |
+
multimodal_embeds,
|
586 |
+
padding_value=self.pad_token_id,
|
587 |
+
padding_side=padding_side,
|
588 |
+
)
|
589 |
+
multimodal_attention_mask = stack_with_padding_2D_attention(
|
590 |
+
multimodal_attention_mask,
|
591 |
+
)
|
592 |
+
if has_labels:
|
593 |
+
multimodal_labels = stack_with_padding(
|
594 |
+
multimodal_labels,
|
595 |
+
padding_value=-100,
|
596 |
+
padding_side=padding_side,
|
597 |
+
)
|
598 |
+
|
599 |
+
return {
|
600 |
+
"inputs_embeds": multimodal_embeds,
|
601 |
+
"attention_mask": multimodal_attention_mask,
|
602 |
+
"labels": multimodal_labels,
|
603 |
+
}
|
604 |
+
|
605 |
+
def _postprocess_outputs_from_forward(
|
606 |
+
self,
|
607 |
+
output: CausalLMOutputWithPast,
|
608 |
+
lang_x: torch.Tensor,
|
609 |
+
vision_tokens: torch.Tensor,
|
610 |
+
past_vision_tokens: torch.Tensor,
|
611 |
+
past_media_locations: torch.Tensor,
|
612 |
+
use_cache: bool = False,
|
613 |
+
):
|
614 |
+
# Include the past vision tokens and past media locations in the output
|
615 |
+
updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
|
616 |
+
lang_x=lang_x,
|
617 |
+
vision_tokens=vision_tokens,
|
618 |
+
past_vision_tokens=past_vision_tokens,
|
619 |
+
past_media_locations=past_media_locations,
|
620 |
+
use_cache=use_cache,
|
621 |
+
)
|
622 |
+
|
623 |
+
# return logits that are the same shape as the original input_ids
|
624 |
+
logits = output.logits
|
625 |
+
batch_logits = []
|
626 |
+
B, T_txt = lang_x.shape
|
627 |
+
for i in range(B):
|
628 |
+
sequence_logits = []
|
629 |
+
logits_j = 0
|
630 |
+
img_id = 0
|
631 |
+
for j in range(T_txt):
|
632 |
+
if lang_x[i, j] != self.media_token_id:
|
633 |
+
sequence_logits.append(logits[i, logits_j])
|
634 |
+
logits_j += 1
|
635 |
+
else:
|
636 |
+
# append the logit for the first image token, then skip over the rest
|
637 |
+
# note: the model actually learns to predict <im_patch>, not <image>
|
638 |
+
sequence_logits.append(logits[i, logits_j])
|
639 |
+
# logits_j += self.num_tokens_per_vis
|
640 |
+
# Offset in account of dynamic num_vis_tokens.
|
641 |
+
logits_j += vision_tokens[i][img_id].shape[0]
|
642 |
+
img_id += 1
|
643 |
+
sequence_logits = torch.stack(sequence_logits, dim=0) # (B, vocab_size)
|
644 |
+
batch_logits.append(sequence_logits)
|
645 |
+
|
646 |
+
batch_logits = torch.stack(batch_logits, dim=0) # (B, T_txt, vocab_size)
|
647 |
+
# The final logits shape should be the same as the original input_ids shape
|
648 |
+
assert batch_logits.shape[:2] == (B, T_txt)
|
649 |
+
|
650 |
+
# assemble the output
|
651 |
+
output = VLMOutputWithPast(
|
652 |
+
loss=output.loss,
|
653 |
+
logits=batch_logits,
|
654 |
+
past_key_values=output.past_key_values,
|
655 |
+
hidden_states=output.hidden_states,
|
656 |
+
attentions=output.attentions,
|
657 |
+
past_media_locations=updated_media_locations,
|
658 |
+
past_vision_tokens=updated_vision_tokens,
|
659 |
+
)
|
660 |
+
|
661 |
+
return output
|
662 |
+
|
663 |
+
def _post_forward_hook(self):
|
664 |
+
pass
|
665 |
+
|
666 |
+
def get_fsdp_lambda_fn(self):
|
667 |
+
"""
|
668 |
+
Returns the lambda function used to decide how to perform FSDP wrapping.
|
669 |
+
"""
|
670 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
671 |
+
CheckpointWrapper,
|
672 |
+
)
|
673 |
+
|
674 |
+
decoder_block_class = getattr_recursive(
|
675 |
+
self.lang_model, self.decoder_layers_attr_name
|
676 |
+
)[0].__class__
|
677 |
+
|
678 |
+
def lambda_fn(module: nn.Module):
|
679 |
+
if getattr(module, "_use_gradient_checkpointing", False) and not isinstance(
|
680 |
+
module, CheckpointWrapper
|
681 |
+
):
|
682 |
+
return False
|
683 |
+
if module is self.vision_tokenizer:
|
684 |
+
return True
|
685 |
+
if isinstance(module, decoder_block_class):
|
686 |
+
return True
|
687 |
+
|
688 |
+
return lambda_fn
|
689 |
+
|
690 |
+
def get_fsdp_wrapping_policy(self):
|
691 |
+
"""
|
692 |
+
Returns the policy used to decide how to perform FSDP wrapping.
|
693 |
+
"""
|
694 |
+
from torch.distributed.fsdp.wrap import _or_policy, _module_wrap_policy, transformer_auto_wrap_policy
|
695 |
+
from open_clip.transformer import VisionTransformer, ResidualAttentionBlock
|
696 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
697 |
+
from transformers.models.phi.modeling_phi import PhiDecoderLayer
|
698 |
+
# for Phi-3 hot fiix
|
699 |
+
try:
|
700 |
+
import importlib
|
701 |
+
commit_hash = str(type(self.lang_model)).split('instruct.')[1].split('.modeling')[0]
|
702 |
+
module_name = f"transformers_modules.microsoft.Phi-3-mini-128k-instruct.{commit_hash}.modeling_phi3"
|
703 |
+
module = importlib.import_module(module_name)
|
704 |
+
Phi3DecoderLayer = module.Phi3DecoderLayer
|
705 |
+
import_phi3 = True
|
706 |
+
except IndexError:
|
707 |
+
import_phi3 = False
|
708 |
+
|
709 |
+
|
710 |
+
# hard code the wrap module name
|
711 |
+
# vision
|
712 |
+
if isinstance(self.vision_encoder, SiglipVisionModel):
|
713 |
+
from transformers import SiglipVisionModel
|
714 |
+
vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={SiglipVisionModel})
|
715 |
+
from transformers.models.siglip.modeling_siglip import SiglipEncoderLayer, SiglipVisionTransformer, SiglipVisionEmbeddings, SiglipMultiheadAttentionPoolingHead
|
716 |
+
# import torch.nn.LayerNorm as LayerNorm
|
717 |
+
transformer_layer_cls_vit = {SiglipEncoderLayer, SiglipVisionTransformer, SiglipVisionEmbeddings, SiglipMultiheadAttentionPoolingHead}
|
718 |
+
vision_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls_vit)
|
719 |
+
vision_wrap_policy = functools.partial(_or_policy, policies=[vit_wrap_policy, vision_transformer_block_policy])
|
720 |
+
|
721 |
+
else:
|
722 |
+
vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={VisionTransformer, TimmModel})
|
723 |
+
# vit_wrap_policy = functools.partial(_module_wrap_policy, module_classes={VisionTransformer})
|
724 |
+
# transformer_layer_cls_vit = {ResidualAttentionBlock}
|
725 |
+
transformer_layer_cls_vit = {ResidualAttentionBlock, Block}
|
726 |
+
# transformer_layer_cls_vit = {Block}
|
727 |
+
vision_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls_vit)
|
728 |
+
vision_wrap_policy = functools.partial(_or_policy, policies=[vit_wrap_policy, vision_transformer_block_policy])
|
729 |
+
# llm
|
730 |
+
transformer_layer_cls={LlamaDecoderLayer, PhiDecoderLayer}
|
731 |
+
if import_phi3:
|
732 |
+
transformer_layer_cls.add(Phi3DecoderLayer)
|
733 |
+
llm_transformer_block_policy = functools.partial(transformer_auto_wrap_policy, transformer_layer_cls=transformer_layer_cls)
|
734 |
+
# vision_tokenizer
|
735 |
+
vis_tokenizer_policy = functools.partial(_module_wrap_policy, module_classes={LinearPatchProjection, PerceiverResampler})
|
736 |
+
return functools.partial(
|
737 |
+
_or_policy,
|
738 |
+
policies = [
|
739 |
+
vision_wrap_policy,
|
740 |
+
llm_transformer_block_policy,
|
741 |
+
vis_tokenizer_policy
|
742 |
+
])
|
743 |
+
|
744 |
+
def group_params_by_weight_decay(self):
|
745 |
+
"""
|
746 |
+
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
|
747 |
+
"""
|
748 |
+
params_with_wd, params_without_wd = [], []
|
749 |
+
for n, p in self.named_parameters():
|
750 |
+
if p.requires_grad:
|
751 |
+
if "lang_model.model.embed_tokens" in n:
|
752 |
+
params_without_wd.append(p)
|
753 |
+
else:
|
754 |
+
params_with_wd.append(p)
|
755 |
+
return params_with_wd, params_without_wd
|
756 |
+
|
757 |
+
@property
|
758 |
+
def num_params_per_module(self):
|
759 |
+
"""Print the number of parameters per module in the model"""
|
760 |
+
return "\n".join(
|
761 |
+
[
|
762 |
+
f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
|
763 |
+
f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
|
764 |
+
f"Language model: {num_params(self.lang_model):,} parameters",
|
765 |
+
]
|
766 |
+
)
|
767 |
+
|
768 |
+
@property
|
769 |
+
def num_trainable_params_per_module(self):
|
770 |
+
"""Print the number of trainable parameters per module in the model"""
|
771 |
+
return "\n".join(
|
772 |
+
[
|
773 |
+
f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
|
774 |
+
f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
|
775 |
+
f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
|
776 |
+
]
|
777 |
+
)
|