SodaXII's picture
Model save
fda8525 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnextv2-base-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: convnextv2-base-1k-224_rice-leaf-disease-augmented-v4_fft
    results: []

convnextv2-base-1k-224_rice-leaf-disease-augmented-v4_fft

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4315
  • Accuracy: 0.9295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 512
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9643 0.5 128 1.7264 0.6040
1.2673 1.0 256 0.7987 0.8490
0.5214 1.5 384 0.3728 0.9094
0.2476 2.0 512 0.4170 0.8792
0.104 2.5 640 0.2676 0.9262
0.0573 3.0 768 0.2642 0.9262
0.0262 3.5 896 0.3739 0.9228
0.0171 4.0 1024 0.3519 0.9362
0.0032 4.5 1152 0.3476 0.9295
0.0011 5.0 1280 0.3547 0.9362
0.0008 5.5 1408 0.3541 0.9329
0.0008 6.0 1536 0.3556 0.9329
0.0008 6.5 1664 0.3524 0.9329
0.0005 7.0 1792 0.3775 0.9329
0.0004 7.5 1920 0.3850 0.9329
0.0003 8.0 2048 0.3900 0.9329
0.0003 8.5 2176 0.3965 0.9295
0.0002 9.0 2304 0.4000 0.9295
0.0002 9.5 2432 0.4019 0.9295
0.0002 10.0 2560 0.4018 0.9295
0.0002 10.5 2688 0.4021 0.9295
0.0002 11.0 2816 0.4063 0.9329
0.0002 11.5 2944 0.4145 0.9295
0.0001 12.0 3072 0.4184 0.9295
0.0001 12.5 3200 0.4249 0.9295
0.0001 13.0 3328 0.4271 0.9295
0.0001 13.5 3456 0.4304 0.9295
0.0001 14.0 3584 0.4315 0.9295
0.0001 14.5 3712 0.4316 0.9295
0.0001 15.0 3840 0.4315 0.9295

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0