Create FAMOptimizer.py
Browse files- FAMOptimizer.py +555 -0
FAMOptimizer.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
class FrequencyHandler:
|
9 |
+
"""Base class for parameter-specific frequency analysis functions"""
|
10 |
+
|
11 |
+
def analyze(self, grad_sample, n_bands, eps=1e-8):
|
12 |
+
"""Default frequency analysis implementation"""
|
13 |
+
freq_repr = torch.fft.rfft(grad_sample.float())
|
14 |
+
freq_power = torch.abs(freq_repr)
|
15 |
+
|
16 |
+
if freq_power.sum() > 0:
|
17 |
+
freq_power = freq_power / (freq_power.sum() + eps)
|
18 |
+
band_size = freq_power.shape[0] // n_bands
|
19 |
+
if band_size <= 0:
|
20 |
+
return [0.0] * n_bands
|
21 |
+
|
22 |
+
band_powers = []
|
23 |
+
for i in range(n_bands):
|
24 |
+
start_idx = i * band_size
|
25 |
+
end_idx = min((i+1) * band_size, freq_power.shape[0])
|
26 |
+
if start_idx < end_idx:
|
27 |
+
band_power = freq_power[start_idx:end_idx].sum().item()
|
28 |
+
band_powers.append(band_power)
|
29 |
+
else:
|
30 |
+
band_powers.append(0.0)
|
31 |
+
|
32 |
+
return band_powers
|
33 |
+
|
34 |
+
def get_adaptive_momentum(self, band_values, base_alpha):
|
35 |
+
"""Default adaptive momentum calculation"""
|
36 |
+
n_bands = len(band_values)
|
37 |
+
high_freq_activity = sum(band_values[n_bands//2:])
|
38 |
+
|
39 |
+
if high_freq_activity > 0.3:
|
40 |
+
return min(0.95, base_alpha + 0.05)
|
41 |
+
return base_alpha
|
42 |
+
|
43 |
+
class ConvFrequencyHandler(FrequencyHandler):
|
44 |
+
"""Specialized handler for convolutional layers"""
|
45 |
+
|
46 |
+
def analyze(self, grad_sample, n_bands, eps=1e-8):
|
47 |
+
freq_repr = torch.fft.rfft(grad_sample.float())
|
48 |
+
freq_power = torch.abs(freq_repr)
|
49 |
+
|
50 |
+
if freq_power.sum() > 0:
|
51 |
+
freq_power = freq_power / (freq_power.sum() + eps)
|
52 |
+
band_powers = []
|
53 |
+
total_freqs = freq_power.shape[0]
|
54 |
+
|
55 |
+
for i in range(n_bands):
|
56 |
+
start_idx = int((total_freqs ** (i/n_bands)) - 1)
|
57 |
+
end_idx = int((total_freqs ** ((i+1)/n_bands)) - 1)
|
58 |
+
start_idx = max(0, start_idx)
|
59 |
+
end_idx = min(end_idx, total_freqs)
|
60 |
+
|
61 |
+
if start_idx < end_idx:
|
62 |
+
band_power = freq_power[start_idx:end_idx].sum().item()
|
63 |
+
band_powers.append(band_power)
|
64 |
+
else:
|
65 |
+
band_powers.append(0.0)
|
66 |
+
|
67 |
+
return band_powers
|
68 |
+
|
69 |
+
def get_adaptive_momentum(self, band_values, base_alpha):
|
70 |
+
"""Convolutional layers benefit from more smoothing in mid-frequencies"""
|
71 |
+
n_bands = len(band_values)
|
72 |
+
mid_freq_activity = sum(band_values[n_bands//4:(3*n_bands)//4])
|
73 |
+
high_freq_activity = sum(band_values[(3*n_bands)//4:])
|
74 |
+
if mid_freq_activity > 0.4:
|
75 |
+
return min(0.97, base_alpha + 0.07)
|
76 |
+
elif high_freq_activity > 0.3:
|
77 |
+
return min(0.95, base_alpha + 0.05)
|
78 |
+
return base_alpha
|
79 |
+
|
80 |
+
class AttentionFrequencyHandler(FrequencyHandler):
|
81 |
+
"""Specialized handler for attention layers"""
|
82 |
+
|
83 |
+
def analyze(self, grad_sample, n_bands, eps=1e-8):
|
84 |
+
freq_repr = torch.fft.rfft(grad_sample.float())
|
85 |
+
freq_power = torch.abs(freq_repr)
|
86 |
+
|
87 |
+
if freq_power.sum() > 0:
|
88 |
+
freq_power = freq_power / (freq_power.sum() + eps)
|
89 |
+
band_powers = []
|
90 |
+
half_bands = n_bands // 2
|
91 |
+
low_band_size = (freq_power.shape[0] // 2) // half_bands
|
92 |
+
for i in range(half_bands):
|
93 |
+
start_idx = i * low_band_size
|
94 |
+
end_idx = min((i+1) * low_band_size, freq_power.shape[0] // 2)
|
95 |
+
if start_idx < end_idx:
|
96 |
+
band_power = freq_power[start_idx:end_idx].sum().item()
|
97 |
+
band_powers.append(band_power)
|
98 |
+
else:
|
99 |
+
band_powers.append(0.0)
|
100 |
+
high_band_size = (freq_power.shape[0] - (freq_power.shape[0] // 2)) // (n_bands - half_bands)
|
101 |
+
for i in range(half_bands, n_bands):
|
102 |
+
start_idx = (freq_power.shape[0] // 2) + (i - half_bands) * high_band_size
|
103 |
+
end_idx = min((freq_power.shape[0] // 2) + (i - half_bands + 1) * high_band_size, freq_power.shape[0])
|
104 |
+
if start_idx < end_idx:
|
105 |
+
band_power = freq_power[start_idx:end_idx].sum().item()
|
106 |
+
band_powers.append(band_power)
|
107 |
+
else:
|
108 |
+
band_powers.append(0.0)
|
109 |
+
|
110 |
+
return band_powers
|
111 |
+
|
112 |
+
def get_adaptive_momentum(self, band_values, base_alpha):
|
113 |
+
"""Custom adaptive momentum for attention layers"""
|
114 |
+
n_bands = len(band_values)
|
115 |
+
max_band_idx = np.argmax(band_values)
|
116 |
+
if max_band_idx < n_bands // 4:
|
117 |
+
return max(0.85, base_alpha - 0.05)
|
118 |
+
elif max_band_idx > 3*n_bands // 4:
|
119 |
+
return min(0.98, base_alpha + 0.08)
|
120 |
+
return base_alpha
|
121 |
+
|
122 |
+
class EmbeddingFrequencyHandler(FrequencyHandler):
|
123 |
+
"""Specialized handler for embedding layers"""
|
124 |
+
|
125 |
+
def get_adaptive_momentum(self, band_values, base_alpha):
|
126 |
+
"""Embeddings often benefit from very stable updates"""
|
127 |
+
n_bands = len(band_values)
|
128 |
+
high_freq_activity = sum(band_values[(3*n_bands)//4:])
|
129 |
+
if high_freq_activity > 0.2:
|
130 |
+
return min(0.98, base_alpha + 0.08)
|
131 |
+
return base_alpha
|
132 |
+
|
133 |
+
class FAMOptimizer(torch.optim.Optimizer):
|
134 |
+
"""
|
135 |
+
Frequency-Adaptive Momentum optimizer with parameter-specific handlers.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
... (existing parameters)
|
139 |
+
debug (bool, optional): Whether to collect debug information (default: False)
|
140 |
+
debug_dir (str, optional): Directory to save debug info (default: './fam_debug')
|
141 |
+
debug_interval (int, optional): Steps between debug dumps (default: 1000)
|
142 |
+
"""
|
143 |
+
def __init__(self, params, lr=1e-3, alpha=0.9, beta=0.99, eps=1e-8,
|
144 |
+
weight_decay=0.0, n_bands=8, fam_start_step=100,
|
145 |
+
layer_boost=True, min_size=256, debug=False,
|
146 |
+
debug_dir='./fam_debug', debug_interval=1000):
|
147 |
+
defaults = dict(lr=lr, alpha=alpha, beta=beta, eps=eps,
|
148 |
+
weight_decay=weight_decay, n_bands=n_bands,
|
149 |
+
fam_start_step=fam_start_step,
|
150 |
+
layer_boost=layer_boost, min_size=min_size)
|
151 |
+
self.debug = debug
|
152 |
+
self.debug_info = {} if debug else None
|
153 |
+
self.debug_dir = debug_dir
|
154 |
+
self.debug_interval = debug_interval
|
155 |
+
self.last_dump_step = 0
|
156 |
+
|
157 |
+
if debug and debug_dir:
|
158 |
+
os.makedirs(debug_dir, exist_ok=True)
|
159 |
+
self.debug_file = os.path.join(
|
160 |
+
debug_dir,
|
161 |
+
f"fam_debug_{datetime.now().strftime('%m%d_%H%M%S')}.json"
|
162 |
+
)
|
163 |
+
with open(self.debug_file, 'w') as f:
|
164 |
+
json.dump({
|
165 |
+
"optimizer": "FAMOptimizer",
|
166 |
+
"settings": {
|
167 |
+
"lr": lr,
|
168 |
+
"alpha": alpha,
|
169 |
+
"beta": beta,
|
170 |
+
"n_bands": n_bands,
|
171 |
+
"fam_start_step": fam_start_step,
|
172 |
+
},
|
173 |
+
"parameters": {},
|
174 |
+
"steps_recorded": []
|
175 |
+
}, f, indent=2)
|
176 |
+
self.handlers = {
|
177 |
+
"default": FrequencyHandler(),
|
178 |
+
"conv": ConvFrequencyHandler(),
|
179 |
+
"attention": AttentionFrequencyHandler(),
|
180 |
+
"embedding": EmbeddingFrequencyHandler()
|
181 |
+
}
|
182 |
+
param_groups = self._add_handlers_to_groups(params)
|
183 |
+
super(FAMOptimizer, self).__init__(params=param_groups, defaults=defaults)
|
184 |
+
def _add_handlers_to_groups(self, params):
|
185 |
+
"""Add appropriate handlers to parameter groups based on type"""
|
186 |
+
if isinstance(params, list) and all(isinstance(pg, dict) for pg in params):
|
187 |
+
for pg in params:
|
188 |
+
if 'handler' not in pg:
|
189 |
+
if any('conv' in name.lower() for name in pg.get('names', [])):
|
190 |
+
pg['handler'] = 'conv'
|
191 |
+
elif any(name in name.lower() for name in pg.get('names', [])
|
192 |
+
for name in ['attention', 'mha', 'self_attn']):
|
193 |
+
pg['handler'] = 'attention'
|
194 |
+
elif any(name in name.lower() for name in pg.get('names', [])
|
195 |
+
for name in ['embed', 'token']):
|
196 |
+
pg['handler'] = 'embedding'
|
197 |
+
else:
|
198 |
+
pg['handler'] = 'default'
|
199 |
+
return params
|
200 |
+
else:
|
201 |
+
return [{'params': params, 'handler': 'default'}]
|
202 |
+
|
203 |
+
def get_handler(self, group):
|
204 |
+
"""Get the appropriate frequency handler for the parameter group"""
|
205 |
+
handler_name = group.get('handler', 'default')
|
206 |
+
return self.handlers[handler_name]
|
207 |
+
|
208 |
+
def dump_debug_info(self, force=False):
|
209 |
+
"""Save the current debug information to file"""
|
210 |
+
if not self.debug or not hasattr(self, 'debug_file'):
|
211 |
+
return
|
212 |
+
current_step = max([self.state[p]['step'] for p in self.state], default=0)
|
213 |
+
if force or (current_step - self.last_dump_step >= self.debug_interval):
|
214 |
+
try:
|
215 |
+
with open(self.debug_file, 'r') as f:
|
216 |
+
debug_data = json.load(f)
|
217 |
+
debug_data["steps_recorded"].append(current_step)
|
218 |
+
|
219 |
+
for param_name, param_info in self.debug_info.items():
|
220 |
+
if param_name not in debug_data["parameters"]:
|
221 |
+
debug_data["parameters"][param_name] = {
|
222 |
+
"handler": param_info.get('handler', 'default'),
|
223 |
+
"steps": [],
|
224 |
+
"bands": [],
|
225 |
+
"alpha": []
|
226 |
+
}
|
227 |
+
last_recorded = len(debug_data["parameters"][param_name]["steps"])
|
228 |
+
if last_recorded < len(param_info['steps']):
|
229 |
+
debug_data["parameters"][param_name]["steps"].extend(param_info['steps'][last_recorded:])
|
230 |
+
debug_data["parameters"][param_name]["bands"].extend(param_info['bands'][last_recorded:])
|
231 |
+
debug_data["parameters"][param_name]["alpha"].extend(param_info['alpha'][last_recorded:])
|
232 |
+
with open(self.debug_file, 'w') as f:
|
233 |
+
json.dump(debug_data, f)
|
234 |
+
|
235 |
+
self.last_dump_step = current_step
|
236 |
+
for param_info in self.debug_info.values():
|
237 |
+
param_info['steps'] = param_info['steps'][-10:]
|
238 |
+
param_info['bands'] = param_info['bands'][-10:]
|
239 |
+
param_info['alpha'] = param_info['alpha'][-10:]
|
240 |
+
|
241 |
+
except Exception as e:
|
242 |
+
print(f"Error dumping FAM debug info: {e}")
|
243 |
+
|
244 |
+
@torch.no_grad()
|
245 |
+
def step(self, closure=None):
|
246 |
+
"""Perform a single optimization step."""
|
247 |
+
loss = None
|
248 |
+
if closure is not None:
|
249 |
+
with torch.enable_grad():
|
250 |
+
loss = closure()
|
251 |
+
|
252 |
+
for group in self.param_groups:
|
253 |
+
for p_idx, p in enumerate(group['params']):
|
254 |
+
if p.grad is None:
|
255 |
+
continue
|
256 |
+
|
257 |
+
grad = p.grad
|
258 |
+
if grad.is_sparse:
|
259 |
+
raise RuntimeError('FAMOptimizer does not support sparse gradients')
|
260 |
+
|
261 |
+
state = self.state[p]
|
262 |
+
|
263 |
+
if len(state) == 0:
|
264 |
+
state['step'] = 0
|
265 |
+
state['exp_avg'] = torch.zeros_like(p)
|
266 |
+
state['freq_history'] = {}
|
267 |
+
state['param_name'] = f"param_{p_idx}"
|
268 |
+
|
269 |
+
state['step'] += 1
|
270 |
+
|
271 |
+
if group['weight_decay'] != 0:
|
272 |
+
grad = grad.add(p, alpha=group['weight_decay'])
|
273 |
+
|
274 |
+
exp_avg = state['exp_avg']
|
275 |
+
alpha = group['alpha']
|
276 |
+
beta = group['beta']
|
277 |
+
lr = group['lr']
|
278 |
+
n_bands = group['n_bands']
|
279 |
+
handler = self.get_handler(group)
|
280 |
+
|
281 |
+
should_apply_fam = (
|
282 |
+
state['step'] > group['fam_start_step'] and
|
283 |
+
p.numel() > group['min_size']
|
284 |
+
)
|
285 |
+
|
286 |
+
if should_apply_fam:
|
287 |
+
try:
|
288 |
+
if p.numel() > 10000:
|
289 |
+
if p.dim() > 1:
|
290 |
+
row_indices = torch.randperm(p.size(0))[:min(p.size(0), 64)]
|
291 |
+
col_indices = torch.randperm(p.size(1))[:min(p.size(1), 64)]
|
292 |
+
grad_sample = grad[row_indices][:, col_indices].flatten()
|
293 |
+
else:
|
294 |
+
sample_idx = torch.randperm(p.numel())[:1000]
|
295 |
+
grad_sample = grad.flatten()[sample_idx]
|
296 |
+
else:
|
297 |
+
grad_sample = grad.flatten()
|
298 |
+
band_powers = handler.analyze(grad_sample, n_bands, group['eps'])
|
299 |
+
if state['step'] <= 10 and p_idx == 0:
|
300 |
+
print(f"Step {state['step']}: Found {len(band_powers)} frequency bands")
|
301 |
+
print(f"Band powers: {[f'{v:.4f}' for v in band_powers]}")
|
302 |
+
for i, power in enumerate(band_powers):
|
303 |
+
band_key = f'band_{i}'
|
304 |
+
if band_key not in state['freq_history']:
|
305 |
+
state['freq_history'][band_key] = power
|
306 |
+
else:
|
307 |
+
state['freq_history'][band_key] = (
|
308 |
+
beta * state['freq_history'][band_key] +
|
309 |
+
(1-beta) * power
|
310 |
+
)
|
311 |
+
band_values = [state['freq_history'].get(f'band_{i}', 0)
|
312 |
+
for i in range(n_bands)]
|
313 |
+
effective_alpha = handler.get_adaptive_momentum(band_values, alpha)
|
314 |
+
|
315 |
+
if self.debug:
|
316 |
+
param_name = state['param_name']
|
317 |
+
if param_name not in self.debug_info:
|
318 |
+
self.debug_info[param_name] = {
|
319 |
+
'steps': [],
|
320 |
+
'bands': [],
|
321 |
+
'handler': group.get('handler', 'default'),
|
322 |
+
'alpha': []
|
323 |
+
}
|
324 |
+
|
325 |
+
if state['step'] % 10 == 0:
|
326 |
+
self.debug_info[param_name]['steps'].append(state['step'])
|
327 |
+
self.debug_info[param_name]['bands'].append(band_values)
|
328 |
+
self.debug_info[param_name]['alpha'].append(effective_alpha)
|
329 |
+
exp_avg.mul_(effective_alpha).add_(grad, alpha=1-effective_alpha)
|
330 |
+
except Exception as e:
|
331 |
+
import traceback
|
332 |
+
print(f"Error in FAM processing for parameter {p_idx}:")
|
333 |
+
print(f"Error type: {type(e).__name__}")
|
334 |
+
print(f"Error message: {e}")
|
335 |
+
print(f"Parameter shape: {p.shape}, numel: {p.numel()}")
|
336 |
+
print(traceback.format_exc())
|
337 |
+
exp_avg.mul_(alpha).add_(grad, alpha=1-alpha)
|
338 |
+
else:
|
339 |
+
exp_avg.mul_(alpha).add_(grad, alpha=1-alpha)
|
340 |
+
p.add_(exp_avg, alpha=-lr)
|
341 |
+
|
342 |
+
if self.debug:
|
343 |
+
self.dump_debug_info()
|
344 |
+
|
345 |
+
return loss
|
346 |
+
|
347 |
+
def __del__(self):
|
348 |
+
"""Clean up and final debug dump when optimizer is destroyed"""
|
349 |
+
if self.debug:
|
350 |
+
self.dump_debug_info(force=True)
|
351 |
+
|
352 |
+
def get_parameter_groups(model, lr=1e-3, weight_decay=0.0):
|
353 |
+
"""
|
354 |
+
Create parameter groups for FAMOptimizer with appropriate handlers based on layer type
|
355 |
+
"""
|
356 |
+
param_groups = []
|
357 |
+
conv_params = []
|
358 |
+
conv_names = []
|
359 |
+
|
360 |
+
attn_params = []
|
361 |
+
attn_names = []
|
362 |
+
|
363 |
+
embed_params = []
|
364 |
+
embed_names = []
|
365 |
+
|
366 |
+
norm_params = []
|
367 |
+
norm_names = []
|
368 |
+
|
369 |
+
other_params = []
|
370 |
+
other_names = []
|
371 |
+
for name, param in model.named_parameters():
|
372 |
+
if not param.requires_grad:
|
373 |
+
continue
|
374 |
+
|
375 |
+
if any(x in name.lower() for x in ['conv', 'cnn']):
|
376 |
+
conv_params.append(param)
|
377 |
+
conv_names.append(name)
|
378 |
+
elif any(x in name.lower() for x in ['attention', 'mha', 'self_attn']):
|
379 |
+
attn_params.append(param)
|
380 |
+
attn_names.append(name)
|
381 |
+
elif any(x in name.lower() for x in ['embed', 'token']):
|
382 |
+
embed_params.append(param)
|
383 |
+
embed_names.append(name)
|
384 |
+
elif any(x in name.lower() for x in ['norm', 'batch', 'layer']):
|
385 |
+
norm_params.append(param)
|
386 |
+
norm_names.append(name)
|
387 |
+
else:
|
388 |
+
other_params.append(param)
|
389 |
+
other_names.append(name)
|
390 |
+
if conv_params:
|
391 |
+
param_groups.append({
|
392 |
+
'params': conv_params,
|
393 |
+
'names': conv_names,
|
394 |
+
'lr': lr,
|
395 |
+
'weight_decay': weight_decay,
|
396 |
+
'alpha': 0.9,
|
397 |
+
'handler': 'conv',
|
398 |
+
'n_bands': 10
|
399 |
+
})
|
400 |
+
|
401 |
+
if attn_params:
|
402 |
+
param_groups.append({
|
403 |
+
'params': attn_params,
|
404 |
+
'names': attn_names,
|
405 |
+
'lr': lr,
|
406 |
+
'weight_decay': weight_decay,
|
407 |
+
'alpha': 0.92,
|
408 |
+
'handler': 'attention',
|
409 |
+
'n_bands': 12
|
410 |
+
})
|
411 |
+
|
412 |
+
if embed_params:
|
413 |
+
param_groups.append({
|
414 |
+
'params': embed_params,
|
415 |
+
'names': embed_names,
|
416 |
+
'lr': lr * 0.8,
|
417 |
+
'weight_decay': weight_decay * 1.5,
|
418 |
+
'alpha': 0.95,
|
419 |
+
'handler': 'embedding',
|
420 |
+
'n_bands': 8
|
421 |
+
})
|
422 |
+
|
423 |
+
if norm_params:
|
424 |
+
param_groups.append({
|
425 |
+
'params': norm_params,
|
426 |
+
'names': norm_names,
|
427 |
+
'lr': lr,
|
428 |
+
'weight_decay': 0.0,
|
429 |
+
'alpha': 0.9,
|
430 |
+
'handler': 'default',
|
431 |
+
'n_bands': 4
|
432 |
+
})
|
433 |
+
|
434 |
+
if other_params:
|
435 |
+
param_groups.append({
|
436 |
+
'params': other_params,
|
437 |
+
'names': other_names,
|
438 |
+
'lr': lr,
|
439 |
+
'weight_decay': weight_decay,
|
440 |
+
'alpha': 0.9,
|
441 |
+
'handler': 'default',
|
442 |
+
'n_bands': 8
|
443 |
+
})
|
444 |
+
|
445 |
+
return param_groups
|
446 |
+
|
447 |
+
import torch
|
448 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
449 |
+
import math
|
450 |
+
|
451 |
+
class FAMSchedulerb(_LRScheduler):
|
452 |
+
"""
|
453 |
+
Scheduler with linear warmup followed by cosine annealing.
|
454 |
+
|
455 |
+
Args:
|
456 |
+
optimizer: Wrapped optimizer
|
457 |
+
warmup_epochs: Number of epochs for the linear warmup
|
458 |
+
max_epochs: Total number of epochs
|
459 |
+
warmup_start_lr: Initial learning rate for warmup
|
460 |
+
eta_min: Minimum learning rate after cosine annealing
|
461 |
+
"""
|
462 |
+
def __init__(self, optimizer, warmup_epochs, max_epochs, warmup_start_lr=1e-8, eta_min=1e-8, last_epoch=-1):
|
463 |
+
self.warmup_epochs = warmup_epochs
|
464 |
+
self.max_epochs = max_epochs
|
465 |
+
self.warmup_start_lr = warmup_start_lr
|
466 |
+
self.eta_min = eta_min
|
467 |
+
super(FAMScheduler, self).__init__(optimizer, last_epoch)
|
468 |
+
|
469 |
+
def get_lr(self):
|
470 |
+
if self.last_epoch < self.warmup_epochs:
|
471 |
+
alpha = self.last_epoch / self.warmup_epochs
|
472 |
+
return [self.warmup_start_lr + (base_lr - self.warmup_start_lr) * alpha for base_lr in self.base_lrs]
|
473 |
+
else:
|
474 |
+
return [self.eta_min + (base_lr - self.eta_min) *
|
475 |
+
(1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) /
|
476 |
+
(self.max_epochs - self.warmup_epochs))) / 2
|
477 |
+
for base_lr in self.base_lrs]
|
478 |
+
import torch
|
479 |
+
import math
|
480 |
+
|
481 |
+
class SimpleFAM(torch.optim.Optimizer):
|
482 |
+
"""
|
483 |
+
Simplified Frequency-Adaptive Momentum optimizer
|
484 |
+
|
485 |
+
A lightweight implementation that focuses on the core concepts
|
486 |
+
without complex debugging or parameter-specific handlers.
|
487 |
+
"""
|
488 |
+
def __init__(self, params, lr=0.001, alpha=0.9, beta=0.99):
|
489 |
+
defaults = dict(lr=lr, alpha=alpha, beta=beta)
|
490 |
+
super(SimpleFAM, self).__init__(params, defaults)
|
491 |
+
print(f"SimpleFAM initialized with lr={lr}, alpha={alpha}")
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def step(self, closure=None):
|
495 |
+
loss = None
|
496 |
+
if closure is not None:
|
497 |
+
with torch.enable_grad():
|
498 |
+
loss = closure()
|
499 |
+
|
500 |
+
for group in self.param_groups:
|
501 |
+
for p in group['params']:
|
502 |
+
if p.grad is None:
|
503 |
+
continue
|
504 |
+
|
505 |
+
state = self.state[p]
|
506 |
+
if len(state) == 0:
|
507 |
+
state['step'] = 0
|
508 |
+
state['exp_avg'] = torch.zeros_like(p)
|
509 |
+
|
510 |
+
state['step'] += 1
|
511 |
+
exp_avg = state['exp_avg']
|
512 |
+
alpha = group['alpha']
|
513 |
+
if p.numel() > 1000 and state['step'] > 100:
|
514 |
+
grad_sample = p.grad.flatten()[:min(1000, p.numel())]
|
515 |
+
freq = torch.fft.rfft(grad_sample.float())
|
516 |
+
power = torch.abs(freq)
|
517 |
+
half = power.shape[0] // 2
|
518 |
+
high_ratio = power[half:].sum() / (power.sum() + 1e-8)
|
519 |
+
effective_alpha = min(0.98, alpha + 0.05 * high_ratio)
|
520 |
+
exp_avg.mul_(effective_alpha).add_(p.grad, alpha=1-effective_alpha)
|
521 |
+
else:
|
522 |
+
exp_avg.mul_(alpha).add_(p.grad, alpha=1-alpha)
|
523 |
+
p.add_(exp_avg, alpha=-group['lr'])
|
524 |
+
|
525 |
+
return loss
|
526 |
+
|
527 |
+
class FAMScheduler(torch.optim.lr_scheduler._LRScheduler):
|
528 |
+
"""
|
529 |
+
Step-based learning rate scheduler for FAM optimizer
|
530 |
+
with warmup and cosine annealing.
|
531 |
+
"""
|
532 |
+
def __init__(self, optimizer, warmup_steps=1000, total_steps=100000,
|
533 |
+
decay_start_step=None, warmup_start_lr=1e-6, eta_min=1e-6,
|
534 |
+
last_epoch=-1):
|
535 |
+
self.warmup_steps = warmup_steps
|
536 |
+
self.total_steps = total_steps
|
537 |
+
self.decay_start_step = decay_start_step if decay_start_step is not None else warmup_steps
|
538 |
+
self.warmup_start_lr = warmup_start_lr
|
539 |
+
self.eta_min = eta_min
|
540 |
+
super(FAMScheduler, self).__init__(optimizer, last_epoch)
|
541 |
+
|
542 |
+
def get_lr(self):
|
543 |
+
if self.last_epoch < self.warmup_steps:
|
544 |
+
alpha = self.last_epoch / self.warmup_steps
|
545 |
+
return [self.warmup_start_lr + (base_lr - self.warmup_start_lr) * alpha
|
546 |
+
for base_lr in self.base_lrs]
|
547 |
+
|
548 |
+
elif self.last_epoch < self.decay_start_step:
|
549 |
+
return self.base_lrs
|
550 |
+
|
551 |
+
else:
|
552 |
+
return [self.eta_min + (base_lr - self.eta_min) *
|
553 |
+
(1 + math.cos(math.pi * (self.last_epoch - self.decay_start_step) /
|
554 |
+
(self.total_steps - self.decay_start_step))) / 2 + 1e-8
|
555 |
+
for base_lr in self.base_lrs]
|