File size: 23,109 Bytes
803aa74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import torch
import torch.nn as nn
import numpy as np
import json
import os
from datetime import datetime

class FrequencyHandler:
    """Base class for parameter-specific frequency analysis functions"""
    
    def analyze(self, grad_sample, n_bands, eps=1e-8):
        """Default frequency analysis implementation"""
        freq_repr = torch.fft.rfft(grad_sample.float())
        freq_power = torch.abs(freq_repr)
        
        if freq_power.sum() > 0:
            freq_power = freq_power / (freq_power.sum() + eps)
        band_size = freq_power.shape[0] // n_bands
        if band_size <= 0:
            return [0.0] * n_bands
            
        band_powers = []
        for i in range(n_bands):
            start_idx = i * band_size
            end_idx = min((i+1) * band_size, freq_power.shape[0])
            if start_idx < end_idx:
                band_power = freq_power[start_idx:end_idx].sum().item()
                band_powers.append(band_power)
            else:
                band_powers.append(0.0)
                
        return band_powers
    
    def get_adaptive_momentum(self, band_values, base_alpha):
        """Default adaptive momentum calculation"""
        n_bands = len(band_values)
        high_freq_activity = sum(band_values[n_bands//2:])
        
        if high_freq_activity > 0.3:
            return min(0.95, base_alpha + 0.05)
        return base_alpha

class ConvFrequencyHandler(FrequencyHandler):
    """Specialized handler for convolutional layers"""
    
    def analyze(self, grad_sample, n_bands, eps=1e-8):
        freq_repr = torch.fft.rfft(grad_sample.float())
        freq_power = torch.abs(freq_repr)
        
        if freq_power.sum() > 0:
            freq_power = freq_power / (freq_power.sum() + eps)
        band_powers = []
        total_freqs = freq_power.shape[0]
        
        for i in range(n_bands):
            start_idx = int((total_freqs ** (i/n_bands)) - 1)
            end_idx = int((total_freqs ** ((i+1)/n_bands)) - 1)
            start_idx = max(0, start_idx)
            end_idx = min(end_idx, total_freqs)
            
            if start_idx < end_idx:
                band_power = freq_power[start_idx:end_idx].sum().item()
                band_powers.append(band_power)
            else:
                band_powers.append(0.0)
                
        return band_powers
    
    def get_adaptive_momentum(self, band_values, base_alpha):
        """Convolutional layers benefit from more smoothing in mid-frequencies"""
        n_bands = len(band_values)
        mid_freq_activity = sum(band_values[n_bands//4:(3*n_bands)//4])
        high_freq_activity = sum(band_values[(3*n_bands)//4:])
        if mid_freq_activity > 0.4:
            return min(0.97, base_alpha + 0.07)
        elif high_freq_activity > 0.3:
            return min(0.95, base_alpha + 0.05)
        return base_alpha

class AttentionFrequencyHandler(FrequencyHandler):
    """Specialized handler for attention layers"""
    
    def analyze(self, grad_sample, n_bands, eps=1e-8):
        freq_repr = torch.fft.rfft(grad_sample.float())
        freq_power = torch.abs(freq_repr)
        
        if freq_power.sum() > 0:
            freq_power = freq_power / (freq_power.sum() + eps)
        band_powers = []
        half_bands = n_bands // 2
        low_band_size = (freq_power.shape[0] // 2) // half_bands
        for i in range(half_bands):
            start_idx = i * low_band_size
            end_idx = min((i+1) * low_band_size, freq_power.shape[0] // 2)
            if start_idx < end_idx:
                band_power = freq_power[start_idx:end_idx].sum().item()
                band_powers.append(band_power)
            else:
                band_powers.append(0.0)
        high_band_size = (freq_power.shape[0] - (freq_power.shape[0] // 2)) // (n_bands - half_bands)
        for i in range(half_bands, n_bands):
            start_idx = (freq_power.shape[0] // 2) + (i - half_bands) * high_band_size
            end_idx = min((freq_power.shape[0] // 2) + (i - half_bands + 1) * high_band_size, freq_power.shape[0])
            if start_idx < end_idx:
                band_power = freq_power[start_idx:end_idx].sum().item()
                band_powers.append(band_power)
            else:
                band_powers.append(0.0)
                
        return band_powers
    
    def get_adaptive_momentum(self, band_values, base_alpha):
        """Custom adaptive momentum for attention layers"""
        n_bands = len(band_values)
        max_band_idx = np.argmax(band_values)
        if max_band_idx < n_bands // 4:
            return max(0.85, base_alpha - 0.05)
        elif max_band_idx > 3*n_bands // 4:
            return min(0.98, base_alpha + 0.08)
        return base_alpha

class EmbeddingFrequencyHandler(FrequencyHandler):
    """Specialized handler for embedding layers"""
    
    def get_adaptive_momentum(self, band_values, base_alpha):
        """Embeddings often benefit from very stable updates"""
        n_bands = len(band_values)
        high_freq_activity = sum(band_values[(3*n_bands)//4:])
        if high_freq_activity > 0.2:
            return min(0.98, base_alpha + 0.08)
        return base_alpha

class FAMOptimizer(torch.optim.Optimizer):
    """
    Frequency-Adaptive Momentum optimizer with parameter-specific handlers.
    
    Args:
        ... (existing parameters)
        debug (bool, optional): Whether to collect debug information (default: False)
        debug_dir (str, optional): Directory to save debug info (default: './fam_debug')
        debug_interval (int, optional): Steps between debug dumps (default: 1000)
    """
    def __init__(self, params, lr=1e-3, alpha=0.9, beta=0.99, eps=1e-8,
                 weight_decay=0.0, n_bands=8, fam_start_step=100,
                 layer_boost=True, min_size=256, debug=False,
                 debug_dir='./fam_debug', debug_interval=1000):
        defaults = dict(lr=lr, alpha=alpha, beta=beta, eps=eps,
                       weight_decay=weight_decay, n_bands=n_bands,
                       fam_start_step=fam_start_step, 
                       layer_boost=layer_boost, min_size=min_size)
        self.debug = debug
        self.debug_info = {} if debug else None
        self.debug_dir = debug_dir
        self.debug_interval = debug_interval
        self.last_dump_step = 0
        
        if debug and debug_dir:
            os.makedirs(debug_dir, exist_ok=True)
            self.debug_file = os.path.join(
                debug_dir, 
                f"fam_debug_{datetime.now().strftime('%m%d_%H%M%S')}.json"
            )
            with open(self.debug_file, 'w') as f:
                json.dump({
                    "optimizer": "FAMOptimizer",
                    "settings": {
                        "lr": lr,
                        "alpha": alpha,
                        "beta": beta,
                        "n_bands": n_bands,
                        "fam_start_step": fam_start_step,
                    },
                    "parameters": {},
                    "steps_recorded": []
                }, f, indent=2)
        self.handlers = {
            "default": FrequencyHandler(),
            "conv": ConvFrequencyHandler(),
            "attention": AttentionFrequencyHandler(),
            "embedding": EmbeddingFrequencyHandler()
        }
        param_groups = self._add_handlers_to_groups(params)
        super(FAMOptimizer, self).__init__(params=param_groups, defaults=defaults)
    def _add_handlers_to_groups(self, params):
        """Add appropriate handlers to parameter groups based on type"""
        if isinstance(params, list) and all(isinstance(pg, dict) for pg in params):
            for pg in params:
                if 'handler' not in pg:
                    if any('conv' in name.lower() for name in pg.get('names', [])):
                        pg['handler'] = 'conv'
                    elif any(name in name.lower() for name in pg.get('names', []) 
                             for name in ['attention', 'mha', 'self_attn']):
                        pg['handler'] = 'attention'
                    elif any(name in name.lower() for name in pg.get('names', [])
                             for name in ['embed', 'token']):
                        pg['handler'] = 'embedding'
                    else:
                        pg['handler'] = 'default'
            return params
        else:
            return [{'params': params, 'handler': 'default'}]
    
    def get_handler(self, group):
        """Get the appropriate frequency handler for the parameter group"""
        handler_name = group.get('handler', 'default')
        return self.handlers[handler_name]
    
    def dump_debug_info(self, force=False):
        """Save the current debug information to file"""
        if not self.debug or not hasattr(self, 'debug_file'):
            return
        current_step = max([self.state[p]['step'] for p in self.state], default=0)
        if force or (current_step - self.last_dump_step >= self.debug_interval):
            try:
                with open(self.debug_file, 'r') as f:
                    debug_data = json.load(f)
                debug_data["steps_recorded"].append(current_step)
                
                for param_name, param_info in self.debug_info.items():
                    if param_name not in debug_data["parameters"]:
                        debug_data["parameters"][param_name] = {
                            "handler": param_info.get('handler', 'default'),
                            "steps": [],
                            "bands": [],
                            "alpha": []
                        }
                    last_recorded = len(debug_data["parameters"][param_name]["steps"])
                    if last_recorded < len(param_info['steps']):
                        debug_data["parameters"][param_name]["steps"].extend(param_info['steps'][last_recorded:])
                        debug_data["parameters"][param_name]["bands"].extend(param_info['bands'][last_recorded:])
                        debug_data["parameters"][param_name]["alpha"].extend(param_info['alpha'][last_recorded:])
                with open(self.debug_file, 'w') as f:
                    json.dump(debug_data, f)
                
                self.last_dump_step = current_step
                for param_info in self.debug_info.values():
                    param_info['steps'] = param_info['steps'][-10:]
                    param_info['bands'] = param_info['bands'][-10:]
                    param_info['alpha'] = param_info['alpha'][-10:]
                    
            except Exception as e:
                print(f"Error dumping FAM debug info: {e}")
    
    @torch.no_grad()
    def step(self, closure=None):
        """Perform a single optimization step."""
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()
        
        for group in self.param_groups:
            for p_idx, p in enumerate(group['params']):
                if p.grad is None:
                    continue
                
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('FAMOptimizer does not support sparse gradients')
                
                state = self.state[p]
                
                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p)
                    state['freq_history'] = {}
                    state['param_name'] = f"param_{p_idx}"
                
                state['step'] += 1
                
                if group['weight_decay'] != 0:
                    grad = grad.add(p, alpha=group['weight_decay'])
                
                exp_avg = state['exp_avg']
                alpha = group['alpha']
                beta = group['beta']
                lr = group['lr']
                n_bands = group['n_bands']
                handler = self.get_handler(group)
                
                should_apply_fam = (
                    state['step'] > group['fam_start_step'] and
                    p.numel() > group['min_size']
                )
                
                if should_apply_fam:
                    try:
                        if p.numel() > 10000:
                            if p.dim() > 1:
                                row_indices = torch.randperm(p.size(0))[:min(p.size(0), 64)]
                                col_indices = torch.randperm(p.size(1))[:min(p.size(1), 64)]
                                grad_sample = grad[row_indices][:, col_indices].flatten()
                            else:
                                sample_idx = torch.randperm(p.numel())[:1000]
                                grad_sample = grad.flatten()[sample_idx]
                        else:
                            grad_sample = grad.flatten()
                        band_powers = handler.analyze(grad_sample, n_bands, group['eps'])
                        if state['step'] <= 10 and p_idx == 0:
                            print(f"Step {state['step']}: Found {len(band_powers)} frequency bands")
                            print(f"Band powers: {[f'{v:.4f}' for v in band_powers]}")
                        for i, power in enumerate(band_powers):
                            band_key = f'band_{i}'
                            if band_key not in state['freq_history']:
                                state['freq_history'][band_key] = power
                            else:
                                state['freq_history'][band_key] = (
                                    beta * state['freq_history'][band_key] +
                                    (1-beta) * power
                                )
                        band_values = [state['freq_history'].get(f'band_{i}', 0) 
                                      for i in range(n_bands)]
                        effective_alpha = handler.get_adaptive_momentum(band_values, alpha)
                        
                        if self.debug:
                            param_name = state['param_name']
                            if param_name not in self.debug_info:
                                self.debug_info[param_name] = {
                                    'steps': [], 
                                    'bands': [], 
                                    'handler': group.get('handler', 'default'),
                                    'alpha': []
                                }
                            
                            if state['step'] % 10 == 0:
                                self.debug_info[param_name]['steps'].append(state['step'])
                                self.debug_info[param_name]['bands'].append(band_values)
                                self.debug_info[param_name]['alpha'].append(effective_alpha)
                        exp_avg.mul_(effective_alpha).add_(grad, alpha=1-effective_alpha)
                    except Exception as e:
                        import traceback
                        print(f"Error in FAM processing for parameter {p_idx}:")
                        print(f"Error type: {type(e).__name__}")
                        print(f"Error message: {e}")
                        print(f"Parameter shape: {p.shape}, numel: {p.numel()}")
                        print(traceback.format_exc())
                        exp_avg.mul_(alpha).add_(grad, alpha=1-alpha)
                else:
                    exp_avg.mul_(alpha).add_(grad, alpha=1-alpha)
                p.add_(exp_avg, alpha=-lr)
        
        if self.debug:
            self.dump_debug_info()
        
        return loss
    
    def __del__(self):
        """Clean up and final debug dump when optimizer is destroyed"""
        if self.debug:
            self.dump_debug_info(force=True)

def get_parameter_groups(model, lr=1e-3, weight_decay=0.0):
    """
    Create parameter groups for FAMOptimizer with appropriate handlers based on layer type
    """
    param_groups = []
    conv_params = []
    conv_names = []
    
    attn_params = []
    attn_names = []
    
    embed_params = []
    embed_names = []
    
    norm_params = []
    norm_names = []
    
    other_params = []
    other_names = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue
            
        if any(x in name.lower() for x in ['conv', 'cnn']):
            conv_params.append(param)
            conv_names.append(name)
        elif any(x in name.lower() for x in ['attention', 'mha', 'self_attn']):
            attn_params.append(param)
            attn_names.append(name)
        elif any(x in name.lower() for x in ['embed', 'token']):
            embed_params.append(param)
            embed_names.append(name)
        elif any(x in name.lower() for x in ['norm', 'batch', 'layer']):
            norm_params.append(param)
            norm_names.append(name)
        else:
            other_params.append(param)
            other_names.append(name)
    if conv_params:
        param_groups.append({
            'params': conv_params,
            'names': conv_names,
            'lr': lr,
            'weight_decay': weight_decay,
            'alpha': 0.9,
            'handler': 'conv',
            'n_bands': 10
        })
    
    if attn_params:
        param_groups.append({
            'params': attn_params,
            'names': attn_names,
            'lr': lr,
            'weight_decay': weight_decay,
            'alpha': 0.92,
            'handler': 'attention',
            'n_bands': 12
        })
    
    if embed_params:
        param_groups.append({
            'params': embed_params,
            'names': embed_names,
            'lr': lr * 0.8,
            'weight_decay': weight_decay * 1.5,
            'alpha': 0.95,
            'handler': 'embedding',
            'n_bands': 8
        })
    
    if norm_params:
        param_groups.append({
            'params': norm_params,
            'names': norm_names,
            'lr': lr,
            'weight_decay': 0.0,
            'alpha': 0.9,
            'handler': 'default',
            'n_bands': 4
        })
    
    if other_params:
        param_groups.append({
            'params': other_params,
            'names': other_names,
            'lr': lr,
            'weight_decay': weight_decay,
            'alpha': 0.9,
            'handler': 'default',
            'n_bands': 8
        })
    
    return param_groups

import torch
from torch.optim.lr_scheduler import _LRScheduler
import math

class FAMSchedulerb(_LRScheduler):
    """
    Scheduler with linear warmup followed by cosine annealing.
    
    Args:
        optimizer: Wrapped optimizer
        warmup_epochs: Number of epochs for the linear warmup
        max_epochs: Total number of epochs
        warmup_start_lr: Initial learning rate for warmup
        eta_min: Minimum learning rate after cosine annealing
    """
    def __init__(self, optimizer, warmup_epochs, max_epochs, warmup_start_lr=1e-8, eta_min=1e-8, last_epoch=-1):
        self.warmup_epochs = warmup_epochs
        self.max_epochs = max_epochs
        self.warmup_start_lr = warmup_start_lr
        self.eta_min = eta_min
        super(FAMScheduler, self).__init__(optimizer, last_epoch)
        
    def get_lr(self):
        if self.last_epoch < self.warmup_epochs:
            alpha = self.last_epoch / self.warmup_epochs
            return [self.warmup_start_lr + (base_lr - self.warmup_start_lr) * alpha for base_lr in self.base_lrs]
        else:
            return [self.eta_min + (base_lr - self.eta_min) * 
                   (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / 
                                (self.max_epochs - self.warmup_epochs))) / 2
                   for base_lr in self.base_lrs]
import torch
import math

class SimpleFAM(torch.optim.Optimizer):
    """
    Simplified Frequency-Adaptive Momentum optimizer
    
    A lightweight implementation that focuses on the core concepts
    without complex debugging or parameter-specific handlers.
    """
    def __init__(self, params, lr=0.001, alpha=0.9, beta=0.99):
        defaults = dict(lr=lr, alpha=alpha, beta=beta)
        super(SimpleFAM, self).__init__(params, defaults)
        print(f"SimpleFAM initialized with lr={lr}, alpha={alpha}")
        
    @torch.no_grad()
    def step(self, closure=None):
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()
        
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                
                state = self.state[p]
                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p)
                
                state['step'] += 1
                exp_avg = state['exp_avg']
                alpha = group['alpha']
                if p.numel() > 1000 and state['step'] > 100:
                    grad_sample = p.grad.flatten()[:min(1000, p.numel())]
                    freq = torch.fft.rfft(grad_sample.float())
                    power = torch.abs(freq)
                    half = power.shape[0] // 2
                    high_ratio = power[half:].sum() / (power.sum() + 1e-8)
                    effective_alpha = min(0.98, alpha + 0.05 * high_ratio)
                    exp_avg.mul_(effective_alpha).add_(p.grad, alpha=1-effective_alpha)
                else:
                    exp_avg.mul_(alpha).add_(p.grad, alpha=1-alpha)
                p.add_(exp_avg, alpha=-group['lr'])
        
        return loss
    
class FAMScheduler(torch.optim.lr_scheduler._LRScheduler):
    """
    Step-based learning rate scheduler for FAM optimizer
    with warmup and cosine annealing.
    """
    def __init__(self, optimizer, warmup_steps=1000, total_steps=100000, 
                 decay_start_step=None, warmup_start_lr=1e-6, eta_min=1e-6, 
                 last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.total_steps = total_steps
        self.decay_start_step = decay_start_step if decay_start_step is not None else warmup_steps
        self.warmup_start_lr = warmup_start_lr
        self.eta_min = eta_min
        super(FAMScheduler, self).__init__(optimizer, last_epoch)
    
    def get_lr(self):
        if self.last_epoch < self.warmup_steps:
            alpha = self.last_epoch / self.warmup_steps
            return [self.warmup_start_lr + (base_lr - self.warmup_start_lr) * alpha 
                    for base_lr in self.base_lrs]
        
        elif self.last_epoch < self.decay_start_step:
            return self.base_lrs
        
        else:
            return [self.eta_min + (base_lr - self.eta_min) * 
                   (1 + math.cos(math.pi * (self.last_epoch - self.decay_start_step) / 
                                (self.total_steps - self.decay_start_step))) / 2 + 1e-8
                   for base_lr in self.base_lrs]