torchnet / scripts /extract_crop_lips.py
milselarch's picture
push to main
df07554
import sys
sys.path.append('..')
import os.path
import options
import cv2
import dlib
import numpy as np
import options as opt
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
from multiprocessing import Pool
predictor_path = '../pretrain/shape_predictor_68_face_landmarks.dat'
predictor = dlib.shape_predictor(predictor_path)
detector = dlib.get_frontal_face_detector()
RUN_PARALLEL = True
FORCE_RATIO = True
BORDER = 10
base = os.path.abspath('..')
image_dir = os.path.join(base, options.images_dir)
anno_dir = os.path.join(base, options.alignments_dir)
crop_dir = os.path.join(base, options.crop_images_dir)
def get_mouth_marks(shape):
marks = np.zeros((2, 20))
co = 0
# Specific for the mouth.
for ii in range(48, 68):
"""
This for loop is going over all mouth-related features.
X and Y coordinates are extracted and stored separately.
"""
X = shape.part(ii)
A = (X.x, X.y)
marks[0, co] = X.x
marks[1, co] = X.y
co += 1
# Get the extreme points(top-left & bottom-right)
X_left, Y_left, X_right, Y_right = [
int(np.amin(marks, axis=1)[0]),
int(np.amin(marks, axis=1)[1]),
int(np.amax(marks, axis=1)[0]),
int(np.amax(marks, axis=1)[1])
]
return X_left, Y_left, X_right, Y_right
translate_pairs = []
for speaker_no in range(1, 35):
speaker_name = f's{speaker_no}'
speaker_image_dir = os.path.join(image_dir, speaker_name)
speaker_crop_dir = os.path.join(crop_dir, speaker_name)
speaker_anno_dir = os.path.join(anno_dir, speaker_name)
if not os.path.exists(speaker_image_dir):
continue
if not os.path.exists(speaker_crop_dir):
os.mkdir(speaker_crop_dir)
sentence_dirs = os.listdir(speaker_image_dir)
for sentence in sentence_dirs:
anno_filepath = os.path.join(speaker_anno_dir, f'{sentence}.align')
if not os.path.exists(anno_filepath):
continue
translate_pairs.append((speaker_no, sentence))
print('PAIRS', len(translate_pairs))
def extract_mouth_image(speaker_no, sentence):
speaker_name = f's{speaker_no}'
speaker_image_dir = os.path.join(image_dir, speaker_name)
speaker_crop_dir = os.path.join(crop_dir, speaker_name)
img_sentence_dir = os.path.join(speaker_image_dir, sentence)
crop_sentence_dir = os.path.join(speaker_crop_dir, sentence)
filenames = os.listdir(img_sentence_dir)
if not os.path.exists(crop_sentence_dir):
os.mkdir(crop_sentence_dir)
for filename in filenames:
img_filepath = os.path.join(img_sentence_dir, filename)
if not img_filepath.endswith('.jpg'):
continue
crop_filepath = os.path.join(crop_sentence_dir, filename)
image = cv2.imread(img_filepath)
detection_bbox = detector(image, 1)[0]
# (360 x 288 x 3)
width, height, depth = image.shape
shape = predictor(image, detection_bbox)
X_left, Y_left, X_right, Y_right = get_mouth_marks(shape)
# Find the center of the mouth.
X_center = (X_left + X_right) / 2.0
Y_center = (Y_left + Y_right) / 2.0
# Make a boarder for cropping.
X_left_new = X_left - BORDER
Y_left_new = Y_left - BORDER
X_right_new = X_right + BORDER
Y_right_new = Y_right + BORDER
# Width and height for cropping
# (before and after considering the border)
width_new = X_right_new - X_left_new
height_new = Y_right_new - Y_left_new
width_current = X_right - X_left
height_current = Y_right - Y_left
height_crop_max = height_new
width_crop_max = width_new
if width_crop_max % 2 == 1:
width_crop_max += 1
if height_crop_max % 2 == 1:
height_crop_max += 1
if FORCE_RATIO:
if width_crop_max < height_crop_max * 2:
width_crop_max = height_crop_max * 2
else:
height_crop_max = width_crop_max // 2
# Find the cropping points(top-left and bottom-right).
X_left_crop = int(X_center - width_crop_max / 2.0)
X_right_crop = int(X_center + width_crop_max / 2.0)
Y_left_crop = int(Y_center - height_crop_max / 2.0)
Y_right_crop = int(Y_center + height_crop_max / 2.0)
X_left_crop = max(X_left_crop, 0)
Y_left_crop = max(Y_left_crop, 0)
mouth = image[
Y_left_crop:Y_right_crop, X_left_crop:X_right_crop, :
]
if FORCE_RATIO:
height, width, _ = mouth.shape
if width != height * 2:
mouth = cv2.resize(
mouth, dsize=(height * 2, height),
interpolation=cv2.INTER_CUBIC
)
# print('SHAPE', mouth.shape)
# print('IMG_PATH', img_filepath)
# plt.imshow(mouth); plt.show()
# print('CF', crop_filepath)
cv2.imwrite(crop_filepath, mouth)
return speaker_no, sentence
if RUN_PARALLEL:
def kwargify(**kwargs): return kwargs
pbar = tqdm(translate_pairs)
pool = Pool(processes=12)
jobs = []
def callback(resp):
pbar.desc = str(resp)
pbar.update(1)
for translate_pair in translate_pairs:
speaker_no, sentence = translate_pair
job_kwargs = kwargify(
speaker_no=speaker_no, sentence=sentence
)
job = pool.apply_async(
extract_mouth_image, kwds=job_kwargs,
callback=callback
)
jobs.append(job)
# Wait for all tasks to complete
for job in jobs:
job.wait()
pool.close()
pool.join()
else:
for translate_pair in tqdm(translate_pairs):
extract_mouth_image(*translate_pair)