|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- big_patent |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: nd_pegasus_bigpatent_cnn_xsum_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: big_patent |
|
type: big_patent |
|
config: d |
|
split: train[:200] |
|
args: d |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.3465 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nd_pegasus_bigpatent_cnn_xsum_model |
|
|
|
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the big_patent dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1037 |
|
- Rouge1: 0.3465 |
|
- Rouge2: 0.1181 |
|
- Rougel: 0.2258 |
|
- Rougelsum: 0.227 |
|
- Gen Len: 85.75 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 3.5734 | 1.0 | 80 | 3.1804 | 0.3468 | 0.1231 | 0.2262 | 0.2268 | 89.95 | |
|
| 3.3146 | 2.0 | 160 | 3.1037 | 0.3465 | 0.1181 | 0.2258 | 0.227 | 85.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |
|
|