YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Vicuna-7B Scam Detector

A fine-tuned version of Vicuna-7B for detecting scams in Thai text.

Model Details

Installation

Install required packages:

pip install transformers peft torch bitsandbytes

Usage

To use the model for scam detection:

  1. Import necessary libraries:
import torch
from transformers import LlamaTokenizer, LlamaForSequenceClassification
from peft import PeftModel, PeftConfig
  1. Load the model and tokenizer:
model_name = "lmsys/vicuna-7b-v1.5"
peft_model_id = "ShinyaJ/vicuna-7b-scam-detector"

tokenizer = LlamaTokenizer.from_pretrained(model_name)
base_model = LlamaForSequenceClassification.from_pretrained(model_name, num_labels=2, load_in_8bit=True, device_map="auto")
peft_config = PeftConfig.from_pretrained(peft_model_id)
model_scam = PeftModel.from_pretrained(base_model, peft_model_id)
  1. Define the prediction function:
def predict_scam(texts, model, tokenizer):
    .
    .
    .

    return ["scam" if pred == 1 else "general" for pred in predicted_classes]
  1. Use the model to predict:
text = "Your text here"
prediction = predict_scam(text, model_scam, tokenizer)
print(prediction)

License

Please refer to the license of the base Vicuna-7B model.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.