VideoMAE_WLASL_100_SR_8

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3229
  • Accuracy: 0.3964
  • Precision: 0.4264
  • Recall: 0.3964
  • F1: 0.3811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 9000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
18.6069 0.02 180 4.6399 0.0 0.0 0.0 0.0
18.5558 1.0200 360 4.6268 0.0148 0.0003 0.0148 0.0006
18.5458 2.0199 540 4.6364 0.0089 0.0003 0.0089 0.0005
18.5593 3.0200 721 4.6385 0.0148 0.0005 0.0148 0.0010
18.5296 4.02 901 4.6196 0.0207 0.0012 0.0207 0.0020
18.355 5.0200 1081 4.6494 0.0178 0.0006 0.0178 0.0011
18.2567 6.0199 1261 4.6268 0.0148 0.0017 0.0148 0.0030
18.0477 7.0200 1442 4.6423 0.0237 0.0040 0.0237 0.0065
17.9032 8.02 1622 4.6046 0.0207 0.0037 0.0207 0.0061
17.6066 9.0200 1802 4.5116 0.0385 0.0074 0.0385 0.0116
16.848 10.0199 1982 4.3914 0.0296 0.0097 0.0296 0.0134
16.2226 11.0200 2163 4.3536 0.0325 0.0219 0.0325 0.0206
15.4599 12.02 2343 4.3156 0.0296 0.0190 0.0296 0.0187
14.6418 13.0200 2523 4.1732 0.0621 0.0318 0.0621 0.0404
13.7576 14.0199 2703 4.0590 0.0947 0.0599 0.0947 0.0654
12.8445 15.0200 2884 3.9267 0.0976 0.0782 0.0976 0.0768
11.3374 16.02 3064 3.8400 0.1124 0.0884 0.1124 0.0803
10.2244 17.0200 3244 3.6886 0.1538 0.1493 0.1538 0.1307
8.5388 18.0199 3424 3.5762 0.1864 0.1925 0.1864 0.1619
7.1906 19.0200 3605 3.4168 0.2130 0.2111 0.2130 0.1949
5.9014 20.02 3785 3.2546 0.2367 0.2693 0.2367 0.2276
4.5854 21.0200 3965 3.1853 0.2574 0.2864 0.2574 0.2479
3.5423 22.0199 4145 3.0606 0.2899 0.3137 0.2899 0.2805
2.6816 23.0200 4326 3.0254 0.3018 0.3183 0.3018 0.2875
1.998 24.02 4506 3.0007 0.2929 0.3343 0.2929 0.2834
1.4233 25.0200 4686 3.0289 0.3225 0.3389 0.3225 0.3061
1.0355 26.0199 4866 2.9665 0.3343 0.3718 0.3343 0.3230
0.7254 27.0200 5047 3.0491 0.3254 0.3580 0.3254 0.3112
0.4656 28.02 5227 3.0303 0.3225 0.3494 0.3225 0.3091
0.3909 29.0200 5407 2.9928 0.3639 0.3901 0.3639 0.3436
0.31 30.0199 5587 3.0805 0.3195 0.3434 0.3195 0.3025
0.179 31.0200 5768 3.0511 0.3491 0.3915 0.3491 0.3349
0.1252 32.02 5948 3.1101 0.3757 0.3966 0.3757 0.3570
0.0966 33.0200 6128 3.1468 0.3846 0.4160 0.3846 0.3691
0.0747 34.0199 6308 3.1351 0.3787 0.4003 0.3787 0.3617
0.0431 35.0200 6489 3.2090 0.3846 0.3979 0.3846 0.3631
0.1095 36.02 6669 3.2229 0.3728 0.3748 0.3728 0.3474
0.0462 37.0200 6849 3.2372 0.3905 0.4124 0.3905 0.3685
0.064 38.0199 7029 3.2563 0.3787 0.4024 0.3787 0.3597
0.125 39.0200 7210 3.2660 0.3817 0.4034 0.3817 0.3614
0.0219 40.02 7390 3.2760 0.3846 0.4123 0.3846 0.3677
0.0767 41.0200 7570 3.2750 0.3698 0.3934 0.3698 0.3528
0.0546 42.0199 7750 3.3079 0.3846 0.4085 0.3846 0.3676
0.0341 43.0200 7931 3.2994 0.3817 0.4116 0.3817 0.3672
0.0252 44.02 8111 3.3123 0.3757 0.3887 0.3757 0.3556
0.0623 45.0200 8291 3.3223 0.3876 0.4077 0.3876 0.3709
0.0439 46.0199 8471 3.3238 0.3935 0.4276 0.3935 0.3772
0.0471 47.0200 8652 3.3215 0.3935 0.4194 0.3935 0.3778
0.047 48.02 8832 3.3259 0.3935 0.4229 0.3935 0.3784
0.045 49.0186 9000 3.3229 0.3964 0.4264 0.3964 0.3811

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
12
Safetensors
Model size
86.3M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Shawon16/VideoMAE_WLASL_100_SR_8

Finetuned
(483)
this model