File size: 41,138 Bytes
75cb577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:150
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: Do you provide support 24/7?
sentences:
- 'How can we get started with your DevOps solutions?
Getting started is easy. Contact us through our website. We''ll schedule a consultation
to discuss your needs, evaluate your current infrastructure, and propose a customized
DevOps solution designed to achieve your goals.'
- 'This is our Portfolio
Introducing the world of Housing Finance& Banking Firm.
Corporate Website with 10 regional languages in India with analytics and user
personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage
the Builder Requests, approve/deny Properties, manage visits and appointments,
manage leads, etc.
Introducing the world of Global Automotive Brand.We have implemented a Multi Locale
Multilingual Omnichannel platform for Royal Enfield. The platform supports public
websites, customer portals, internal portals, business applications for over 35+
different locations all over the world.
Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML
in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops &
Data Governance
Managing cloud provisioning and modernization alongside automated infrastructure,
event-driven microservices, containerization, DevOps, cybersecurity, and 24x7
monitoring support ensures efficient, secure, and responsive IT operations.'
- 'We are a New breed of innovative digital transformation agency, redefining storytelling
for an always-on world.
With roots dating back to 2017, we started as a pocket size team of enthusiasts
with a goal of helping traditional businesses transform and create dynamic, digital
cultures through disruptive strategies and agile deployment of innovative solutions.'
- source_sentence: What services do you offer for AI adoption?
sentences:
- 'In what ways can machine learning optimize our operations?
Machine learning algorithms can analyze operational data to identify inefficiencies,
predict maintenance needs, optimize supply chains, and automate repetitive tasks,
significantly improving operational efficiency and reducing costs.'
- "At Techchefz Digital, we specialize in guiding companies through the complexities\
\ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
\ Our consultancy services are designed to enhance your operational efficiency\
\ and decision-making capabilities across all sectors. With a global network of\
\ AI/ML experts and a commitment to excellence, we are your partners in transforming\
\ innovative possibilities into real-world achievements. \
\ \
\ \n DATA INTELLIGENCE PLATFORMS we\
\ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
- "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\
\ in comprehensive website audits that provide valuable insights and recommendations\
\ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\
\ roadmap that transform your digital enterprise and produce a return on investment,\
\ basis our discovery framework, brainstorming sessions & current state analysis.\n\
\nPlatform Selection\nHelping you select the optimal digital experience, commerce,\
\ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\
\ next-gen scalable and agile enterprise digital platforms, along with multi-platform\
\ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\
\ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\
\ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\
\ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\
\ applications, data, and IT workloads, along with Application maintenance and\
\ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
\ team to solve your hiring challenges with our easy to deploy staff augmentation\
\ offerings.\""
- source_sentence: What challenges did the company face in its early days?
sentences:
- 'How do we do Custom Development ?
We follow below process to develop custom web or mobile Application on Agile Methodology,
breaking requirements in pieces and developing and shipping them with considering
utmost quality:
Requirements Analysis
We begin by understanding the client's needs and objectives for the website.
Identify key features, functionality, and any specific design preferences.
Project Planning
Then create a detailed project plan outlining the scope, timeline, and milestones.
Define the technology stack and development tools suitable for the project.
User Experience Design
Then comes the stage of Developing wireframes or prototypes to visualize the website's
structure and layout. We create a custom design that aligns with the brand identity
and user experience goals.
Development
After getting Sign-off on Design from Client, we break the requirements into Sprints
on Agile Methodology, and start developing them.'
- 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
decision to depart from the corporate ladder in December 2016. Fueled by a clear
vision to revolutionize the digital landscape, Mayank set out to leverage the
best technology ingredients, crafting custom applications and digital ecosystems
tailored to clients'' specific needs, limitations, and budgets.
However, this solo journey was not without its challenges. Mayank had to initiate
the revenue engine by offering corporate trainings and conducting online batches
for tech training across the USA. He also undertook small projects and subcontracted
modules of larger projects for clients in the US, UK, and India. It was only after
this initial groundwork that Mayank was able to hire a group of interns, whom
he meticulously trained and groomed to prepare them for handling Enterprise Level
Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial
spirit in building TechChefz Digital from the ground up.
With a passion for innovation and a relentless drive for excellence, Mayank has
steered TechChefz Digital through strategic partnerships, groundbreaking projects,
and exponential growth. His leadership has been instrumental in shaping TechChefz
Digital into a leading force in the digital transformation arena, inspiring a
culture of innovation and excellence that continues to propel the company forward.'
- 'Our Solutions
Strategy & Digital Transformation
Innovate via digital transformation, modernize tech, craft product strategies,
enhance customer experiences, optimize data analytics, transition to cloud for
growth and efficiency
Product Engineering & Custom Development
Providing product development, enterprise web and mobile development, microservices
integrations, quality engineering, and application support services to drive innovation
and enhance operational efficiency.'
- source_sentence: What kind of data do you leverage for AI solutions?
sentences:
- 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
for Complex Problems and delieverd a comprehensive Website Development, Production
Support & Managed Services, we optimized customer journeys, integrate analytics,
CRM, ERP, and third-party applications, and implement cutting-edge technologies
for enhanced performance and efficiency
and achievied 200% Reduction in operational time & effort managing content & experience,
70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
& Retention'
- 'Why do we need Microservices ?
Instead of building a monolithic application where all functionalities are tightly
integrated, microservices break down the system into modular and loosely coupled
services.
Scalability
Flexibility and Agility
Resilience and Fault Isolation
Technology Diversity
Continuous Delivery'
- Our AI/ML services pave the way for transformative change across industries, embodying
a client-focused approach that integrates seamlessly with human-centric innovation.
Our collaborative teams are dedicated to fostering growth, leveraging data, and
harnessing the predictive power of artificial intelligence to forge the next wave
of software excellence. We don't just deliver AI; we deliver the future.
- source_sentence: What do you guys do for digital strategy?
sentences:
- " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
\ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
Helping you select the optimal digital experience, commerce, cloud and marketing\
\ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\
\ and agile enterprise digital platforms, along with multi-platform integrations.\n\
\nProduct Builds\nHelp you ideate, strategize, and engineer your product with\
\ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\
\ augment your existing team to solve your hiring challenges with our easy to\
\ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
\ your business-critical applications, data, and IT workloads, along with Application\
\ maintenance and operations\n"
- "Introducing the world of\nGlobal Hospitality Firm\n\nIn this project, We focused\
\ on strategizing CX, diverse platform dev, travel booking, indemnity journeys,\
\ digital community, and managed services enhance travel experience and operational\
\ efficiency. \nStrategizing & defining the Customer Experience across business\
\ units and respective products / services,\nPlatform Development and Integrations\
\ across different tech stacks - Drupal, Magento, MERN, Microservices, Canvas\
\ LMS, OKTA SSO, AWS based Cloud Infrastructure, Build Automation\nTravel Packages\
\ Booking Platform with payments, subscriptions, real time booking, etc\nIndemnity\
\ & Self-Service Journeys\n\nAnd we achieved, 100% Improvement in Marketing Content,\
\ Real Time Prices & Inventories delivery. 80% Increase in Customer Retention,175%\
\ Increase in Partner & Vendor Operational Efficiency"
- 'Introducing the world of General Insurance Firm
In this project, we implemented Digital Solution and Implementation with Headless
Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the
following features:
PWA & AMP based Web Pages
Page Speed Optimization
Reusable and scalable React JS / Next JS Templates and Components
Headless Drupal CMS with Content & Experience management, approval workflows,
etc for seamless collaboration between the business and marketing teams
Minimalistic Buy and Renewal Journeys for various products, with API integrations
and adherence to data compliances
We achieved 250% Reduction in Operational Time and Effort in managing the Content
& Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
campaign pages'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.18666666666666668
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5866666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18666666666666668
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19555555555555554
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13599999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07999999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18666666666666668
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5866666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.48942651032647805
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38962962962962955
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.398026376123124
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.24
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5733333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6533333333333333
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.24
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1911111111111111
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13066666666666663
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07999999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.24
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5733333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6533333333333333
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4991793077336057
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4047195767195766
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4124023465759078
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.21333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5466666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6266666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7466666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.21333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1822222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12533333333333332
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07466666666666665
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.21333333333333335
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5466666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6266666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7466666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4717065825983648
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38359259259259254
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.39417579048787715
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.21333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.52
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5733333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7066666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.21333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11466666666666667
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07066666666666666
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.21333333333333335
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.52
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5733333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7066666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44415760022208445
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36086772486772484
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.37364447853598953
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.14666666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5066666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6133333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14666666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10133333333333334
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06133333333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14666666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5066666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6133333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3595031317594935
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.27981481481481474
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.29776557642203677
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5_v1")
# Run inference
sentences = [
'What do you guys do for digital strategy?',
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
| cosine_accuracy@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 |
| cosine_accuracy@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 |
| cosine_accuracy@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 |
| cosine_precision@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
| cosine_precision@3 | 0.1956 | 0.1911 | 0.1822 | 0.1733 | 0.1333 |
| cosine_precision@5 | 0.136 | 0.1307 | 0.1253 | 0.1147 | 0.1013 |
| cosine_precision@10 | 0.08 | 0.08 | 0.0747 | 0.0707 | 0.0613 |
| cosine_recall@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
| cosine_recall@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 |
| cosine_recall@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 |
| cosine_recall@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 |
| **cosine_ndcg@10** | **0.4894** | **0.4992** | **0.4717** | **0.4442** | **0.3595** |
| cosine_mrr@10 | 0.3896 | 0.4047 | 0.3836 | 0.3609 | 0.2798 |
| cosine_map@100 | 0.398 | 0.4124 | 0.3942 | 0.3736 | 0.2978 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 150 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 150 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 12.15 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Is it hard to move old systems to the cloud?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> |
| <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> |
| <code>do you track customer behavior?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 4
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `push_to_hub`: True
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1
- `push_to_hub_model_id`: bge-base-en-v1.5_v1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: bge-base-en-v1.5_v1
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.2105 | 1 | 22.6183 | - | - | - | - | - |
| 0.8421 | 4 | - | 0.4602 | 0.4392 | 0.4498 | 0.4162 | 0.3698 |
| 1.2105 | 5 | 20.549 | - | - | - | - | - |
| 1.8421 | 8 | - | 0.5047 | 0.4304 | 0.4538 | 0.4202 | 0.3458 |
| 2.4211 | 10 | 17.664 | - | - | - | - | - |
| **2.8421** | **12** | **-** | **0.482** | **0.4618** | **0.4658** | **0.4537** | **0.3496** |
| 3.6316 | 15 | 14.6735 | - | - | - | - | - |
| 3.8421 | 16 | - | 0.4894 | 0.4992 | 0.4717 | 0.4442 | 0.3595 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |