File size: 41,138 Bytes
75cb577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:150
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: Do you provide support 24/7?
  sentences:
  - 'How can we get started with your DevOps solutions?

    Getting started is easy. Contact us through our website. We''ll schedule a consultation
    to discuss your needs, evaluate your current infrastructure, and propose a customized
    DevOps solution designed to achieve your goals.'
  - 'This is our Portfolio

    Introducing the world of Housing Finance& Banking Firm.

    Corporate Website with 10 regional languages in India with analytics and user
    personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage
    the Builder Requests, approve/deny Properties, manage visits and appointments,
    manage leads, etc.



    Introducing the world of Global Automotive Brand.We have implemented a Multi Locale
    Multilingual Omnichannel platform for Royal Enfield. The platform supports public
    websites, customer portals, internal portals, business applications for over 35+
    different locations all over the world.


    Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML
    in collaboration with Successive Technologies Inc, USA.  Cloud, Dev-Sec-Ops &
    Data Governance

    Managing cloud provisioning and modernization alongside automated infrastructure,
    event-driven microservices, containerization, DevOps, cybersecurity, and 24x7
    monitoring support ensures efficient, secure, and responsive IT operations.'
  - 'We are a New breed of innovative digital transformation agency, redefining storytelling
    for an always-on world.

    With roots dating back to 2017, we started as a pocket size team of enthusiasts
    with a goal of helping traditional businesses transform and create dynamic, digital
    cultures through disruptive strategies and agile deployment of innovative solutions.'
- source_sentence: What services do you offer for AI adoption?
  sentences:
  - 'In what ways can machine learning optimize our operations?

    Machine learning algorithms can analyze operational data to identify inefficiencies,
    predict maintenance needs, optimize supply chains, and automate repetitive tasks,
    significantly improving operational efficiency and reducing costs.'
  - "At Techchefz Digital, we specialize in guiding companies through the complexities\
    \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
    \ Our consultancy services are designed to enhance your operational efficiency\
    \ and decision-making capabilities across all sectors. With a global network of\
    \ AI/ML experts and a commitment to excellence, we are your partners in transforming\
    \ innovative possibilities into real-world achievements.                     \
    \                                                                            \
    \                                           \n DATA INTELLIGENCE PLATFORMS we\
    \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
  - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\
    \ in comprehensive website audits that provide valuable insights and recommendations\
    \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\
    \ roadmap that transform your digital enterprise and produce a return on investment,\
    \ basis our discovery framework, brainstorming sessions & current state analysis.\n\
    \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\
    \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\
    \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\
    \ integrations.   \nProduct Builds\nHelp you ideate, strategize, and engineer\
    \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\
    \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\
    \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\
    \ applications, data, and IT workloads, along with Application maintenance and\
    \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
    \ team to solve your hiring challenges with our easy to deploy staff augmentation\
    \ offerings.\""
- source_sentence: What challenges did the company face in its early days?
  sentences:
  - 'How do we do Custom Development ?

    We follow below process to develop custom web or mobile Application on Agile Methodology,
    breaking requirements in pieces and developing and shipping them with considering
    utmost quality:

    Requirements Analysis

    We begin by understanding the client's needs and objectives for the website.
    Identify key features, functionality, and any specific design preferences.


    Project Planning

    Then create a detailed project plan outlining the scope, timeline, and milestones.
    Define the technology stack and development tools suitable for the project.


    User Experience Design

    Then comes the stage of Developing wireframes or prototypes to visualize the website's
    structure and layout. We create a custom design that aligns with the brand identity
    and user experience goals.


    Development

    After getting Sign-off on Design from Client, we break the requirements into Sprints
    on Agile Methodology, and start developing them.'
  - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
    decision to depart from the corporate ladder in December 2016. Fueled by a clear
    vision to revolutionize the digital landscape, Mayank set out to leverage the
    best technology ingredients, crafting custom applications and digital ecosystems
    tailored to clients'' specific needs, limitations, and budgets.


    However, this solo journey was not without its challenges. Mayank had to initiate
    the revenue engine by offering corporate trainings and conducting online batches
    for tech training across the USA. He also undertook small projects and subcontracted
    modules of larger projects for clients in the US, UK, and India. It was only after
    this initial groundwork that Mayank was able to hire a group of interns, whom
    he meticulously trained and groomed to prepare them for handling Enterprise Level
    Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial
    spirit in building TechChefz Digital from the ground up.


    With a passion for innovation and a relentless drive for excellence, Mayank has
    steered TechChefz Digital through strategic partnerships, groundbreaking projects,
    and exponential growth. His leadership has been instrumental in shaping TechChefz
    Digital into a leading force in the digital transformation arena, inspiring a
    culture of innovation and excellence that continues to propel the company forward.'
  - 'Our Solutions

    Strategy & Digital Transformation

    Innovate via digital transformation, modernize tech, craft product strategies,
    enhance customer experiences, optimize data analytics, transition to cloud for
    growth and efficiency


    Product Engineering & Custom Development

    Providing product development, enterprise web and mobile development, microservices
    integrations, quality engineering, and application support services to drive innovation
    and enhance operational efficiency.'
- source_sentence: What kind of data do you leverage for AI solutions?
  sentences:
  - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
    for Complex Problems and delieverd a comprehensive Website Development, Production
    Support & Managed Services, we optimized customer journeys, integrate analytics,
    CRM, ERP, and third-party applications, and implement cutting-edge technologies
    for enhanced performance and efficiency

    and achievied 200% Reduction in operational time & effort managing content & experience,
    70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
    & Retention'
  - 'Why do we need Microservices ?

    Instead of building a monolithic application where all functionalities are tightly
    integrated, microservices break down the system into modular and loosely coupled
    services.


    Scalability

    Flexibility and Agility

    Resilience and Fault Isolation

    Technology Diversity

    Continuous Delivery'
  - Our AI/ML services pave the way for transformative change across industries, embodying
    a client-focused approach that integrates seamlessly with human-centric innovation.
    Our collaborative teams are dedicated to fostering growth, leveraging data, and
    harnessing the predictive power of artificial intelligence to forge the next wave
    of software excellence. We don't just deliver AI; we deliver the future.
- source_sentence: What do you guys do for digital strategy?
  sentences:
  - "  What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
    \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
    Helping you select the optimal digital experience, commerce, cloud and marketing\
    \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\
    \ and agile enterprise digital platforms, along with multi-platform integrations.\n\
    \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\
    \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\
    \ augment your existing team to solve your hiring challenges with our easy to\
    \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
    \ your business-critical applications, data, and IT workloads, along with Application\
    \ maintenance and operations\n"
  - "Introducing the world of\nGlobal Hospitality Firm\n\nIn this project, We focused\
    \ on strategizing CX, diverse platform dev, travel booking, indemnity journeys,\
    \ digital community, and managed services enhance travel experience and operational\
    \ efficiency. \nStrategizing & defining the Customer Experience across business\
    \ units and respective products / services,\nPlatform Development and Integrations\
    \ across different tech stacks - Drupal, Magento, MERN, Microservices, Canvas\
    \ LMS, OKTA SSO, AWS based Cloud Infrastructure, Build Automation\nTravel Packages\
    \ Booking Platform with payments, subscriptions, real time booking, etc\nIndemnity\
    \ & Self-Service Journeys\n\nAnd we achieved, 100% Improvement in Marketing Content,\
    \ Real Time Prices & Inventories delivery. 80% Increase in Customer Retention,175%\
    \ Increase in Partner & Vendor Operational Efficiency"
  - 'Introducing the world of General Insurance Firm

    In this project, we implemented Digital Solution and Implementation with Headless
    Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the
    following features:

    PWA & AMP based Web Pages

    Page Speed Optimization

    Reusable and scalable React JS / Next JS Templates and Components

    Headless Drupal CMS with Content & Experience management, approval workflows,
    etc for seamless collaboration between the business and marketing teams

    Minimalistic Buy and Renewal Journeys for various products, with API integrations
    and adherence to data compliances


    We achieved 250% Reduction in Operational Time and Effort in managing the Content
    & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
    buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
    campaign pages'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.18666666666666668
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5866666666666667
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.68
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18666666666666668
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19555555555555554
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13599999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07999999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18666666666666668
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5866666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.68
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.48942651032647805
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.38962962962962955
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.398026376123124
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.24
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5733333333333334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6533333333333333
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.24
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1911111111111111
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13066666666666663
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07999999999999997
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.24
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5733333333333334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6533333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4991793077336057
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4047195767195766
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4124023465759078
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.21333333333333335
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5466666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6266666666666667
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7466666666666667
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.21333333333333335
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1822222222222222
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12533333333333332
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07466666666666665
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.21333333333333335
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5466666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6266666666666667
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7466666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4717065825983648
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.38359259259259254
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39417579048787715
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.21333333333333335
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5733333333333334
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7066666666666667
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.21333333333333335
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1733333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11466666666666667
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07066666666666666
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.21333333333333335
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.52
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5733333333333334
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7066666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.44415760022208445
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.36086772486772484
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.37364447853598953
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.14666666666666667
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5066666666666667
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6133333333333333
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.14666666666666667
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10133333333333334
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06133333333333333
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.14666666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5066666666666667
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6133333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3595031317594935
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.27981481481481474
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.29776557642203677
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5_v1")
# Run inference
sentences = [
    'What do you guys do for digital strategy?',
    '  What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
    'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.1867     | 0.24       | 0.2133     | 0.2133     | 0.1467     |
| cosine_accuracy@3   | 0.5867     | 0.5733     | 0.5467     | 0.52       | 0.4        |
| cosine_accuracy@5   | 0.68       | 0.6533     | 0.6267     | 0.5733     | 0.5067     |
| cosine_accuracy@10  | 0.8        | 0.8        | 0.7467     | 0.7067     | 0.6133     |
| cosine_precision@1  | 0.1867     | 0.24       | 0.2133     | 0.2133     | 0.1467     |
| cosine_precision@3  | 0.1956     | 0.1911     | 0.1822     | 0.1733     | 0.1333     |
| cosine_precision@5  | 0.136      | 0.1307     | 0.1253     | 0.1147     | 0.1013     |
| cosine_precision@10 | 0.08       | 0.08       | 0.0747     | 0.0707     | 0.0613     |
| cosine_recall@1     | 0.1867     | 0.24       | 0.2133     | 0.2133     | 0.1467     |
| cosine_recall@3     | 0.5867     | 0.5733     | 0.5467     | 0.52       | 0.4        |
| cosine_recall@5     | 0.68       | 0.6533     | 0.6267     | 0.5733     | 0.5067     |
| cosine_recall@10    | 0.8        | 0.8        | 0.7467     | 0.7067     | 0.6133     |
| **cosine_ndcg@10**  | **0.4894** | **0.4992** | **0.4717** | **0.4442** | **0.3595** |
| cosine_mrr@10       | 0.3896     | 0.4047     | 0.3836     | 0.3609     | 0.2798     |
| cosine_map@100      | 0.398      | 0.4124     | 0.3942     | 0.3736     | 0.2978     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 150 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 150 samples:
  |         | anchor                                                                            | positive                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 7 tokens</li><li>mean: 12.15 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
* Samples:
  | anchor                                                                          | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Is it hard to move old systems to the cloud?</code>                       | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps."  "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges."   "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges."  "Transform your products<br>The push for digi...</code> |
  | <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code>                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>do you track customer behavior?</code>                                    | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 4
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `push_to_hub`: True
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1
- `push_to_hub_model_id`: bge-base-en-v1.5_v1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: bge-base-en-v1.5_v1
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.2105     | 1      | 22.6183       | -                      | -                      | -                      | -                      | -                     |
| 0.8421     | 4      | -             | 0.4602                 | 0.4392                 | 0.4498                 | 0.4162                 | 0.3698                |
| 1.2105     | 5      | 20.549        | -                      | -                      | -                      | -                      | -                     |
| 1.8421     | 8      | -             | 0.5047                 | 0.4304                 | 0.4538                 | 0.4202                 | 0.3458                |
| 2.4211     | 10     | 17.664        | -                      | -                      | -                      | -                      | -                     |
| **2.8421** | **12** | **-**         | **0.482**              | **0.4618**             | **0.4658**             | **0.4537**             | **0.3496**            |
| 3.6316     | 15     | 14.6735       | -                      | -                      | -                      | -                      | -                     |
| 3.8421     | 16     | -             | 0.4894                 | 0.4992                 | 0.4717                 | 0.4442                 | 0.3595                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->