BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5_v1")
# Run inference
sentences = [
'What do you guys do for digital strategy?',
' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
cosine_accuracy@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 |
cosine_accuracy@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 |
cosine_accuracy@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 |
cosine_precision@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
cosine_precision@3 | 0.1956 | 0.1911 | 0.1822 | 0.1733 | 0.1333 |
cosine_precision@5 | 0.136 | 0.1307 | 0.1253 | 0.1147 | 0.1013 |
cosine_precision@10 | 0.08 | 0.08 | 0.0747 | 0.0707 | 0.0613 |
cosine_recall@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 |
cosine_recall@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 |
cosine_recall@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 |
cosine_recall@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 |
cosine_ndcg@10 | 0.4894 | 0.4992 | 0.4717 | 0.4442 | 0.3595 |
cosine_mrr@10 | 0.3896 | 0.4047 | 0.3836 | 0.3609 | 0.2798 |
cosine_map@100 | 0.398 | 0.4124 | 0.3942 | 0.3736 | 0.2978 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 150 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 150 samples:
anchor positive type string string details - min: 7 tokens
- mean: 12.15 tokens
- max: 20 tokens
- min: 20 tokens
- mean: 126.17 tokens
- max: 378 tokens
- Samples:
anchor positive Is it hard to move old systems to the cloud?
We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.
"Engage, analyze & target your customers
Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners
The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations
The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products
The push for digi...What benefits does marketing automation offer for time management?
Our MarTech capabilities
Personalization
Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.
Marketing Automation
Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.
Customer Relationship Management
CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.do you track customer behavior?
How can your recommendation engines improve our business?
Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 4learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedpush_to_hub
: Truehub_model_id
: Shashwat13333/bge-base-en-v1.5_v1push_to_hub_model_id
: bge-base-en-v1.5_v1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: Shashwat13333/bge-base-en-v1.5_v1hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: bge-base-en-v1.5_v1push_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2105 | 1 | 22.6183 | - | - | - | - | - |
0.8421 | 4 | - | 0.4602 | 0.4392 | 0.4498 | 0.4162 | 0.3698 |
1.2105 | 5 | 20.549 | - | - | - | - | - |
1.8421 | 8 | - | 0.5047 | 0.4304 | 0.4538 | 0.4202 | 0.3458 |
2.4211 | 10 | 17.664 | - | - | - | - | - |
2.8421 | 12 | - | 0.482 | 0.4618 | 0.4658 | 0.4537 | 0.3496 |
3.6316 | 15 | 14.6735 | - | - | - | - | - |
3.8421 | 16 | - | 0.4894 | 0.4992 | 0.4717 | 0.4442 | 0.3595 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Shashwat13333/bge-base-en-v1.5_v1
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.187
- Cosine Accuracy@3 on dim 768self-reported0.587
- Cosine Accuracy@5 on dim 768self-reported0.680
- Cosine Accuracy@10 on dim 768self-reported0.800
- Cosine Precision@1 on dim 768self-reported0.187
- Cosine Precision@3 on dim 768self-reported0.196
- Cosine Precision@5 on dim 768self-reported0.136
- Cosine Precision@10 on dim 768self-reported0.080
- Cosine Recall@1 on dim 768self-reported0.187
- Cosine Recall@3 on dim 768self-reported0.587