File size: 7,323 Bytes
1900eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Brain Tumor MRI Detection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pip install tensorflow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
    "from tensorflow.keras.models import load_model\n",
    "from tensorflow.keras.preprocessing import image\n",
    "import os\n",
    "import numpy as np\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Current Directory: e:\\Github Projects\\BrainTumorMRIDetection\n"
     ]
    }
   ],
   "source": [
    "current_dir = os.getcwd()\n",
    "print (\"Current Directory: \" + current_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dir = os.path.join(current_dir, 'Testing')\n",
    "val_dir = os.path.join(current_dir, 'Training')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the target size and batch size\n",
    "target_size = (1250, 1250)\n",
    "batch_size = 32\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found 394 images belonging to 4 classes.\n",
      "Found 2870 images belonging to 4 classes.\n"
     ]
    }
   ],
   "source": [
    "# Define the training and validation data generators\n",
    "train_datagen = ImageDataGenerator(rescale=1./255)\n",
    "train_generator = train_datagen.flow_from_directory(\n",
    "    train_dir,\n",
    "    target_size=target_size,\n",
    "    batch_size=batch_size,\n",
    "    class_mode='categorical')\n",
    "\n",
    "val_datagen = ImageDataGenerator(rescale=1./255)\n",
    "val_generator = val_datagen.flow_from_directory(\n",
    "    val_dir,\n",
    "    target_size=target_size,\n",
    "    batch_size=batch_size,\n",
    "    class_mode='categorical')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the model\n",
    "model = tf.keras.models.Sequential([\n",
    "    tf.keras.layers.Conv2D(32, (3, 3), activation='relu',\n",
    "                           input_shape=(target_size[0], target_size[1], 3)),\n",
    "    tf.keras.layers.MaxPooling2D((2, 2)),\n",
    "    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),\n",
    "    tf.keras.layers.MaxPooling2D((2, 2)),\n",
    "    tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),\n",
    "    tf.keras.layers.MaxPooling2D((2, 2)),\n",
    "    tf.keras.layers.Flatten(),\n",
    "    tf.keras.layers.Dense(128, activation='relu'),\n",
    "    tf.keras.layers.Dropout(0.5),\n",
    "    tf.keras.layers.Dense(train_generator.num_classes, activation='softmax')\n",
    "])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Compile the model\n",
    "model.compile(optimizer='adam',\n",
    "              loss='categorical_crossentropy',\n",
    "              metrics=['accuracy'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/15\n",
      "12/12 [==============================] - 753s 64s/step - loss: 17.4665 - accuracy: 0.2431 - val_loss: 1.4717 - val_accuracy: 0.2883\n",
      "Epoch 2/15\n",
      "12/12 [==============================] - 694s 60s/step - loss: 1.1907 - accuracy: 0.4779 - val_loss: 1.4602 - val_accuracy: 0.2798\n",
      "Epoch 3/15\n",
      "12/12 [==============================] - 704s 61s/step - loss: 0.8829 - accuracy: 0.6575 - val_loss: 1.5343 - val_accuracy: 0.2791\n",
      "Epoch 4/15\n",
      "12/12 [==============================] - 697s 61s/step - loss: 0.4633 - accuracy: 0.8398 - val_loss: 1.7458 - val_accuracy: 0.3206\n",
      "Epoch 5/15\n",
      "12/12 [==============================] - 690s 60s/step - loss: 0.2428 - accuracy: 0.9309 - val_loss: 2.3506 - val_accuracy: 0.3536\n",
      "Epoch 6/15\n",
      "12/12 [==============================] - 698s 61s/step - loss: 0.1575 - accuracy: 0.9558 - val_loss: 2.2596 - val_accuracy: 0.3588\n",
      "Epoch 7/15\n",
      "12/12 [==============================] - 694s 61s/step - loss: 0.1069 - accuracy: 0.9696 - val_loss: 1.9421 - val_accuracy: 0.3272\n",
      "Epoch 8/15\n",
      "12/12 [==============================] - 694s 61s/step - loss: 0.0688 - accuracy: 0.9807 - val_loss: 3.2596 - val_accuracy: 0.3711\n",
      "Epoch 9/15\n",
      "12/12 [==============================] - 685s 61s/step - loss: 0.1024 - accuracy: 0.9696 - val_loss: 2.0157 - val_accuracy: 0.3722\n",
      "Epoch 10/15\n",
      "12/12 [==============================] - 699s 61s/step - loss: 0.0556 - accuracy: 0.9890 - val_loss: 2.7399 - val_accuracy: 0.3430\n",
      "Epoch 11/15\n",
      "12/12 [==============================] - 696s 61s/step - loss: 0.0561 - accuracy: 0.9862 - val_loss: 2.4300 - val_accuracy: 0.3831\n",
      "Epoch 12/15\n",
      "12/12 [==============================] - 684s 60s/step - loss: 0.0320 - accuracy: 0.9917 - val_loss: 2.5653 - val_accuracy: 0.3511\n",
      "Epoch 13/15\n",
      "12/12 [==============================] - 681s 61s/step - loss: 0.0493 - accuracy: 0.9890 - val_loss: 2.8736 - val_accuracy: 0.3515\n",
      "Epoch 14/15\n",
      "12/12 [==============================] - 689s 60s/step - loss: 0.0213 - accuracy: 0.9917 - val_loss: 3.0044 - val_accuracy: 0.3704\n",
      "Epoch 15/15\n",
      "12/12 [==============================] - 692s 62s/step - loss: 0.0407 - accuracy: 0.9917 - val_loss: 2.8754 - val_accuracy: 0.3838\n"
     ]
    }
   ],
   "source": [
    "# Train the model\n",
    "history = model.fit(\n",
    "    train_generator,\n",
    "    steps_per_epoch=train_generator.samples//batch_size,\n",
    "    epochs=15,\n",
    "    validation_data=val_generator,\n",
    "    validation_steps=val_generator.samples//batch_size)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Saving The Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the trained model in the current directory\n",
    "model.save(os.path.join(current_dir, 'model.h5'))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}