Commit
·
1900eb9
1
Parent(s):
01cc889
Source Files For The Model
Browse files- BrainTumorMRIDetection.ipynb +232 -0
BrainTumorMRIDetection.ipynb
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Brain Tumor MRI Detection"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"pip install tensorflow"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import tensorflow as tf\n",
|
27 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
28 |
+
"from tensorflow.keras.models import load_model\n",
|
29 |
+
"from tensorflow.keras.preprocessing import image\n",
|
30 |
+
"import os\n",
|
31 |
+
"import numpy as np\n",
|
32 |
+
"from PIL import Image"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 3,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"name": "stdout",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"Current Directory: e:\\Github Projects\\BrainTumorMRIDetection\n"
|
45 |
+
]
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"source": [
|
49 |
+
"current_dir = os.getcwd()\n",
|
50 |
+
"print (\"Current Directory: \" + current_dir)"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 4,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"train_dir = os.path.join(current_dir, 'Testing')\n",
|
60 |
+
"val_dir = os.path.join(current_dir, 'Training')"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 5,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"# Define the target size and batch size\n",
|
70 |
+
"target_size = (1250, 1250)\n",
|
71 |
+
"batch_size = 32\n"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 6,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"Found 394 images belonging to 4 classes.\n",
|
84 |
+
"Found 2870 images belonging to 4 classes.\n"
|
85 |
+
]
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"source": [
|
89 |
+
"# Define the training and validation data generators\n",
|
90 |
+
"train_datagen = ImageDataGenerator(rescale=1./255)\n",
|
91 |
+
"train_generator = train_datagen.flow_from_directory(\n",
|
92 |
+
" train_dir,\n",
|
93 |
+
" target_size=target_size,\n",
|
94 |
+
" batch_size=batch_size,\n",
|
95 |
+
" class_mode='categorical')\n",
|
96 |
+
"\n",
|
97 |
+
"val_datagen = ImageDataGenerator(rescale=1./255)\n",
|
98 |
+
"val_generator = val_datagen.flow_from_directory(\n",
|
99 |
+
" val_dir,\n",
|
100 |
+
" target_size=target_size,\n",
|
101 |
+
" batch_size=batch_size,\n",
|
102 |
+
" class_mode='categorical')\n"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 7,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"# Define the model\n",
|
112 |
+
"model = tf.keras.models.Sequential([\n",
|
113 |
+
" tf.keras.layers.Conv2D(32, (3, 3), activation='relu',\n",
|
114 |
+
" input_shape=(target_size[0], target_size[1], 3)),\n",
|
115 |
+
" tf.keras.layers.MaxPooling2D((2, 2)),\n",
|
116 |
+
" tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),\n",
|
117 |
+
" tf.keras.layers.MaxPooling2D((2, 2)),\n",
|
118 |
+
" tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),\n",
|
119 |
+
" tf.keras.layers.MaxPooling2D((2, 2)),\n",
|
120 |
+
" tf.keras.layers.Flatten(),\n",
|
121 |
+
" tf.keras.layers.Dense(128, activation='relu'),\n",
|
122 |
+
" tf.keras.layers.Dropout(0.5),\n",
|
123 |
+
" tf.keras.layers.Dense(train_generator.num_classes, activation='softmax')\n",
|
124 |
+
"])\n"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 8,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"# Compile the model\n",
|
134 |
+
"model.compile(optimizer='adam',\n",
|
135 |
+
" loss='categorical_crossentropy',\n",
|
136 |
+
" metrics=['accuracy'])\n"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": 9,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [
|
144 |
+
{
|
145 |
+
"name": "stdout",
|
146 |
+
"output_type": "stream",
|
147 |
+
"text": [
|
148 |
+
"Epoch 1/15\n",
|
149 |
+
"12/12 [==============================] - 753s 64s/step - loss: 17.4665 - accuracy: 0.2431 - val_loss: 1.4717 - val_accuracy: 0.2883\n",
|
150 |
+
"Epoch 2/15\n",
|
151 |
+
"12/12 [==============================] - 694s 60s/step - loss: 1.1907 - accuracy: 0.4779 - val_loss: 1.4602 - val_accuracy: 0.2798\n",
|
152 |
+
"Epoch 3/15\n",
|
153 |
+
"12/12 [==============================] - 704s 61s/step - loss: 0.8829 - accuracy: 0.6575 - val_loss: 1.5343 - val_accuracy: 0.2791\n",
|
154 |
+
"Epoch 4/15\n",
|
155 |
+
"12/12 [==============================] - 697s 61s/step - loss: 0.4633 - accuracy: 0.8398 - val_loss: 1.7458 - val_accuracy: 0.3206\n",
|
156 |
+
"Epoch 5/15\n",
|
157 |
+
"12/12 [==============================] - 690s 60s/step - loss: 0.2428 - accuracy: 0.9309 - val_loss: 2.3506 - val_accuracy: 0.3536\n",
|
158 |
+
"Epoch 6/15\n",
|
159 |
+
"12/12 [==============================] - 698s 61s/step - loss: 0.1575 - accuracy: 0.9558 - val_loss: 2.2596 - val_accuracy: 0.3588\n",
|
160 |
+
"Epoch 7/15\n",
|
161 |
+
"12/12 [==============================] - 694s 61s/step - loss: 0.1069 - accuracy: 0.9696 - val_loss: 1.9421 - val_accuracy: 0.3272\n",
|
162 |
+
"Epoch 8/15\n",
|
163 |
+
"12/12 [==============================] - 694s 61s/step - loss: 0.0688 - accuracy: 0.9807 - val_loss: 3.2596 - val_accuracy: 0.3711\n",
|
164 |
+
"Epoch 9/15\n",
|
165 |
+
"12/12 [==============================] - 685s 61s/step - loss: 0.1024 - accuracy: 0.9696 - val_loss: 2.0157 - val_accuracy: 0.3722\n",
|
166 |
+
"Epoch 10/15\n",
|
167 |
+
"12/12 [==============================] - 699s 61s/step - loss: 0.0556 - accuracy: 0.9890 - val_loss: 2.7399 - val_accuracy: 0.3430\n",
|
168 |
+
"Epoch 11/15\n",
|
169 |
+
"12/12 [==============================] - 696s 61s/step - loss: 0.0561 - accuracy: 0.9862 - val_loss: 2.4300 - val_accuracy: 0.3831\n",
|
170 |
+
"Epoch 12/15\n",
|
171 |
+
"12/12 [==============================] - 684s 60s/step - loss: 0.0320 - accuracy: 0.9917 - val_loss: 2.5653 - val_accuracy: 0.3511\n",
|
172 |
+
"Epoch 13/15\n",
|
173 |
+
"12/12 [==============================] - 681s 61s/step - loss: 0.0493 - accuracy: 0.9890 - val_loss: 2.8736 - val_accuracy: 0.3515\n",
|
174 |
+
"Epoch 14/15\n",
|
175 |
+
"12/12 [==============================] - 689s 60s/step - loss: 0.0213 - accuracy: 0.9917 - val_loss: 3.0044 - val_accuracy: 0.3704\n",
|
176 |
+
"Epoch 15/15\n",
|
177 |
+
"12/12 [==============================] - 692s 62s/step - loss: 0.0407 - accuracy: 0.9917 - val_loss: 2.8754 - val_accuracy: 0.3838\n"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"# Train the model\n",
|
183 |
+
"history = model.fit(\n",
|
184 |
+
" train_generator,\n",
|
185 |
+
" steps_per_epoch=train_generator.samples//batch_size,\n",
|
186 |
+
" epochs=15,\n",
|
187 |
+
" validation_data=val_generator,\n",
|
188 |
+
" validation_steps=val_generator.samples//batch_size)"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"attachments": {},
|
193 |
+
"cell_type": "markdown",
|
194 |
+
"metadata": {},
|
195 |
+
"source": [
|
196 |
+
"Saving The Model"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 11,
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"# Save the trained model in the current directory\n",
|
206 |
+
"model.save(os.path.join(current_dir, 'model.h5'))"
|
207 |
+
]
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"metadata": {
|
211 |
+
"kernelspec": {
|
212 |
+
"display_name": "base",
|
213 |
+
"language": "python",
|
214 |
+
"name": "python3"
|
215 |
+
},
|
216 |
+
"language_info": {
|
217 |
+
"codemirror_mode": {
|
218 |
+
"name": "ipython",
|
219 |
+
"version": 3
|
220 |
+
},
|
221 |
+
"file_extension": ".py",
|
222 |
+
"mimetype": "text/x-python",
|
223 |
+
"name": "python",
|
224 |
+
"nbconvert_exporter": "python",
|
225 |
+
"pygments_lexer": "ipython3",
|
226 |
+
"version": "3.8.8"
|
227 |
+
},
|
228 |
+
"orig_nbformat": 4
|
229 |
+
},
|
230 |
+
"nbformat": 4,
|
231 |
+
"nbformat_minor": 2
|
232 |
+
}
|