distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2277
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.279 | 1.0 | 50 | 0.4636 | 0.88 |
0.1597 | 2.0 | 100 | 0.3688 | 0.895 |
0.0882 | 3.0 | 150 | 0.4473 | 0.88 |
0.0486 | 4.0 | 200 | 0.5118 | 0.87 |
0.0341 | 5.0 | 250 | 0.4274 | 0.895 |
0.0058 | 6.0 | 300 | 0.5832 | 0.86 |
0.0017 | 7.0 | 350 | 0.5238 | 0.9 |
0.0004 | 8.0 | 400 | 0.6152 | 0.895 |
0.0001 | 9.0 | 450 | 0.6718 | 0.915 |
0.0 | 10.0 | 500 | 0.9763 | 0.875 |
0.0 | 11.0 | 550 | 1.0753 | 0.885 |
0.0 | 12.0 | 600 | 0.9361 | 0.905 |
0.1016 | 13.0 | 650 | 1.1638 | 0.89 |
0.0 | 14.0 | 700 | 1.1003 | 0.895 |
0.0 | 15.0 | 750 | 1.0716 | 0.89 |
0.0 | 16.0 | 800 | 1.1925 | 0.89 |
0.0609 | 17.0 | 850 | 1.1557 | 0.89 |
0.0 | 18.0 | 900 | 1.1128 | 0.89 |
0.0 | 19.0 | 950 | 1.2144 | 0.89 |
0.0 | 20.0 | 1000 | 1.2277 | 0.89 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 207
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.