parent-column-model / README.md
leelandzhang's picture
Upload folder using huggingface_hub
dbafe8c verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:70000
- loss:CoSENTLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: cabinet.cabinetPhaseBCurrentMeasurement
sentences:
- log.lowLoadPowerCutoff
- log.loadPowerLowerLimit
- log.minimumIlluminationSetpoint
- source_sentence: log.alarmFault.alarmFaultHighloadcurrent
sentences:
- log.upperLoadPowerConstraint
- schedule.daysAssignedInSchedule
- log.operatingRegimeChange
- source_sentence: log.alarmFault.lightStabilityViolation
sentences:
- log.alarmFault.loadVoltagelow
- log.alarmFault.insufficientLoadWattage
- log.alarmFault.alarmFaultLowcurrent
- source_sentence: log.relayComponentStatus
sentences:
- device.LightFixtureIpAddress
- maintenance.maintenanceOperationStatus
- log.wattsToVaRatio
- source_sentence: log.alarmFault.waveringLightEmission
sentences:
- log.maximumWattageBoundary
- log.logLowloadpowerthreshold
- log.presetBrightnessPoint
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'log.alarmFault.waveringLightEmission',
'log.presetBrightnessPoint',
'log.maximumWattageBoundary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 70,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 10.81 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.1 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: -0.0</li><li>mean: 0.11</li><li>max: 0.99</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------|:--------------------------------------------------|:----------------------------------|
| <code>log.temperatureMaximumLimit</code> | <code>schedule.daysWhenScheduleIsEffective</code> | <code>0.006032609194517136</code> |
| <code>device.DeviceTimeZone</code> | <code>maintenance.maintenanceModifications</code> | <code>0.011996420472860337</code> |
| <code>log.alarmFault.highAmps</code> | <code>log.currentLowerBoundary</code> | <code>0.20761280847788094</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 70,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 10.81 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.1 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: -0.0</li><li>mean: 0.11</li><li>max: 0.99</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------|:--------------------------------------------------|:----------------------------------|
| <code>log.temperatureMaximumLimit</code> | <code>schedule.daysWhenScheduleIsEffective</code> | <code>0.006032609194517136</code> |
| <code>device.DeviceTimeZone</code> | <code>maintenance.maintenanceModifications</code> | <code>0.011996420472860337</code> |
| <code>log.alarmFault.highAmps</code> | <code>log.currentLowerBoundary</code> | <code>0.20761280847788094</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.2286 | 1000 | 4.9688 | 4.1188 |
| 0.4571 | 2000 | 4.0956 | 3.9955 |
| 0.6857 | 3000 | 4.0295 | 3.8972 |
| 0.9143 | 4000 | 3.9616 | 3.8387 |
| 1.1429 | 5000 | 3.9073 | 3.7972 |
| 1.3714 | 6000 | 3.8188 | 3.7559 |
| 1.6 | 7000 | 3.7536 | 3.5798 |
| 1.8286 | 8000 | 3.6843 | 3.6076 |
| 2.0571 | 9000 | 3.6231 | 3.5363 |
| 2.2857 | 10000 | 3.5492 | 3.4779 |
| 2.5143 | 11000 | 3.5423 | 3.4188 |
| 2.7429 | 12000 | 3.4868 | 3.4221 |
| 2.9714 | 13000 | 3.4593 | 3.2962 |
| 3.2 | 14000 | 3.3957 | 3.3086 |
| 3.4286 | 15000 | 3.3801 | 3.2652 |
| 3.6571 | 16000 | 3.3501 | 3.2527 |
| 3.8857 | 17000 | 3.3117 | 3.2055 |
| 4.1143 | 18000 | 3.2396 | 3.1950 |
| 4.3429 | 19000 | 3.2424 | 3.1900 |
| 4.5714 | 20000 | 3.2185 | 3.1467 |
| 4.8 | 21000 | 3.2173 | 3.1315 |
| 5.0286 | 22000 | 3.2119 | 3.1175 |
| 5.2571 | 23000 | 3.1583 | 3.0700 |
| 5.4857 | 24000 | 3.1634 | 3.0862 |
| 5.7143 | 25000 | 3.1538 | 3.0367 |
| 5.9429 | 26000 | 3.1187 | 3.0292 |
| 6.1712 | 27000 | 3.0703 | 3.0349 |
| 6.3998 | 28000 | 3.0925 | 3.0017 |
| 6.6283 | 29000 | 3.0179 | 2.9847 |
| 6.8569 | 30000 | 3.0331 | 2.9622 |
| 7.0855 | 31000 | 3.0784 | 2.9761 |
| 7.3141 | 32000 | 3.0484 | 2.9501 |
| 7.5426 | 33000 | 3.0138 | 2.9397 |
| 7.7712 | 34000 | 2.9935 | 2.9322 |
| 7.9998 | 35000 | 2.9912 | 2.9247 |
| 8.2283 | 36000 | 2.9852 | 2.9069 |
| 8.4569 | 37000 | 2.946 | 2.9162 |
| 8.6855 | 38000 | 2.9503 | 2.9038 |
| 8.9141 | 39000 | 2.9759 | 2.8972 |
| 9.1426 | 40000 | 2.9413 | 2.8893 |
| 9.3712 | 41000 | 2.933 | 2.8878 |
| 9.5998 | 42000 | 2.918 | 2.8747 |
| 9.8283 | 43000 | 2.9427 | 2.8708 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.48.0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->