|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:70000 |
|
- loss:CoSENTLoss |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
widget: |
|
- source_sentence: cabinet.cabinetPhaseBCurrentMeasurement |
|
sentences: |
|
- log.lowLoadPowerCutoff |
|
- log.loadPowerLowerLimit |
|
- log.minimumIlluminationSetpoint |
|
- source_sentence: log.alarmFault.alarmFaultHighloadcurrent |
|
sentences: |
|
- log.upperLoadPowerConstraint |
|
- schedule.daysAssignedInSchedule |
|
- log.operatingRegimeChange |
|
- source_sentence: log.alarmFault.lightStabilityViolation |
|
sentences: |
|
- log.alarmFault.loadVoltagelow |
|
- log.alarmFault.insufficientLoadWattage |
|
- log.alarmFault.alarmFaultLowcurrent |
|
- source_sentence: log.relayComponentStatus |
|
sentences: |
|
- device.LightFixtureIpAddress |
|
- maintenance.maintenanceOperationStatus |
|
- log.wattsToVaRatio |
|
- source_sentence: log.alarmFault.waveringLightEmission |
|
sentences: |
|
- log.maximumWattageBoundary |
|
- log.logLowloadpowerthreshold |
|
- log.presetBrightnessPoint |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'log.alarmFault.waveringLightEmission', |
|
'log.presetBrightnessPoint', |
|
'log.maximumWattageBoundary', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 70,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 10.81 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.1 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: -0.0</li><li>mean: 0.11</li><li>max: 0.99</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------|:--------------------------------------------------|:----------------------------------| |
|
| <code>log.temperatureMaximumLimit</code> | <code>schedule.daysWhenScheduleIsEffective</code> | <code>0.006032609194517136</code> | |
|
| <code>device.DeviceTimeZone</code> | <code>maintenance.maintenanceModifications</code> | <code>0.011996420472860337</code> | |
|
| <code>log.alarmFault.highAmps</code> | <code>log.currentLowerBoundary</code> | <code>0.20761280847788094</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 70,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 10.81 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.1 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: -0.0</li><li>mean: 0.11</li><li>max: 0.99</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------|:--------------------------------------------------|:----------------------------------| |
|
| <code>log.temperatureMaximumLimit</code> | <code>schedule.daysWhenScheduleIsEffective</code> | <code>0.006032609194517136</code> | |
|
| <code>device.DeviceTimeZone</code> | <code>maintenance.maintenanceModifications</code> | <code>0.011996420472860337</code> | |
|
| <code>log.alarmFault.highAmps</code> | <code>log.currentLowerBoundary</code> | <code>0.20761280847788094</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:-----:|:-------------:|:---------------:| |
|
| 0.2286 | 1000 | 4.9688 | 4.1188 | |
|
| 0.4571 | 2000 | 4.0956 | 3.9955 | |
|
| 0.6857 | 3000 | 4.0295 | 3.8972 | |
|
| 0.9143 | 4000 | 3.9616 | 3.8387 | |
|
| 1.1429 | 5000 | 3.9073 | 3.7972 | |
|
| 1.3714 | 6000 | 3.8188 | 3.7559 | |
|
| 1.6 | 7000 | 3.7536 | 3.5798 | |
|
| 1.8286 | 8000 | 3.6843 | 3.6076 | |
|
| 2.0571 | 9000 | 3.6231 | 3.5363 | |
|
| 2.2857 | 10000 | 3.5492 | 3.4779 | |
|
| 2.5143 | 11000 | 3.5423 | 3.4188 | |
|
| 2.7429 | 12000 | 3.4868 | 3.4221 | |
|
| 2.9714 | 13000 | 3.4593 | 3.2962 | |
|
| 3.2 | 14000 | 3.3957 | 3.3086 | |
|
| 3.4286 | 15000 | 3.3801 | 3.2652 | |
|
| 3.6571 | 16000 | 3.3501 | 3.2527 | |
|
| 3.8857 | 17000 | 3.3117 | 3.2055 | |
|
| 4.1143 | 18000 | 3.2396 | 3.1950 | |
|
| 4.3429 | 19000 | 3.2424 | 3.1900 | |
|
| 4.5714 | 20000 | 3.2185 | 3.1467 | |
|
| 4.8 | 21000 | 3.2173 | 3.1315 | |
|
| 5.0286 | 22000 | 3.2119 | 3.1175 | |
|
| 5.2571 | 23000 | 3.1583 | 3.0700 | |
|
| 5.4857 | 24000 | 3.1634 | 3.0862 | |
|
| 5.7143 | 25000 | 3.1538 | 3.0367 | |
|
| 5.9429 | 26000 | 3.1187 | 3.0292 | |
|
| 6.1712 | 27000 | 3.0703 | 3.0349 | |
|
| 6.3998 | 28000 | 3.0925 | 3.0017 | |
|
| 6.6283 | 29000 | 3.0179 | 2.9847 | |
|
| 6.8569 | 30000 | 3.0331 | 2.9622 | |
|
| 7.0855 | 31000 | 3.0784 | 2.9761 | |
|
| 7.3141 | 32000 | 3.0484 | 2.9501 | |
|
| 7.5426 | 33000 | 3.0138 | 2.9397 | |
|
| 7.7712 | 34000 | 2.9935 | 2.9322 | |
|
| 7.9998 | 35000 | 2.9912 | 2.9247 | |
|
| 8.2283 | 36000 | 2.9852 | 2.9069 | |
|
| 8.4569 | 37000 | 2.946 | 2.9162 | |
|
| 8.6855 | 38000 | 2.9503 | 2.9038 | |
|
| 8.9141 | 39000 | 2.9759 | 2.8972 | |
|
| 9.1426 | 40000 | 2.9413 | 2.8893 | |
|
| 9.3712 | 41000 | 2.933 | 2.8878 | |
|
| 9.5998 | 42000 | 2.918 | 2.8747 | |
|
| 9.8283 | 43000 | 2.9427 | 2.8708 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.0 |
|
- PyTorch: 2.5.0+cu121 |
|
- Accelerate: 1.0.1 |
|
- Datasets: 3.0.2 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |