Rud's picture
Rud/bigbird_qlora_bfloat16_multi_lexsum
8122422 verified
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- rouge
base_model: google/bigbird-pegasus-large-bigpatent
model-index:
- name: bigbird_lora_multi_lexsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bigbird_lora_multi_lexsum
This model is a fine-tuned version of [google/bigbird-pegasus-large-bigpatent](https://huggingface.co/google/bigbird-pegasus-large-bigpatent) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 9.1007
- Rouge1: 0.197
- Rouge2: 0.0165
- Rougel: 0.1446
- Rougelsum: 0.1445
- Gen Len: 235.208
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 9.2003 | 1.0 | 850 | 9.1012 | 0.1982 | 0.0162 | 0.1439 | 0.1441 | 234.016 |
| 9.151 | 2.0 | 1700 | 9.1007 | 0.197 | 0.0165 | 0.1446 | 0.1445 | 235.208 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2